Biomarkers of cardiac fibrosis in arterial hypertension

Authors

  • N. Ya. Dotsenko State institution "Zaporizhia Medical Academy of Post-Graduate Education Ministry of Health of Ukraine", Ukraine
  • L. V. Gerasimenko State institution "Zaporizhia Medical Academy of Post-Graduate Education Ministry of Health of Ukraine", Ukraine
  • S. S. Boev State institution "Zaporizhia Medical Academy of Post-Graduate Education Ministry of Health of Ukraine", Ukraine
  • I. A. Shekhunova State institution "Zaporizhia Medical Academy of Post-Graduate Education Ministry of Health of Ukraine", Ukraine
  • A. V. Molodan State institution "Zaporizhia Medical Academy of Post-Graduate Education Ministry of Health of Ukraine", Ukraine
  • A. Ya. Malinovskaya State institution "Zaporizhia Medical Academy of Post-Graduate Education Ministry of Health of Ukraine", Ukraine
  • O. V. Yatsenko State institution "Zaporizhia Medical Academy of Post-Graduate Education Ministry of Health of Ukraine", Ukraine

DOI:

https://doi.org/10.34287/MMT.4(47).2020.1

Abstract

The article presents a review of the literature on the role of myocardial fibrosis in the development of myocardial remodeling in patients with arterial hypertension. Information about the state of the structure and function of the extracellular matrix in health and disease is generalized. The characteristics of myocardial fibrosis biomarkers detection in the circulating blood are reflected.

References

Marchal S, Arnoud WJ van’t Hof, Hollander M The new European guideline on cardiovascular disease prevention; how to make progress in general practice? Eur. J. Gen. Pract. 2018; 24 (1): 57–59. DOI: 10.1080/13814788.2017.1401063.

Lim SS, Vos T, Flaxman AD et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012; 380 (9859): 2224–260. DOI: https://doi.org/10.1016/S01406736(12)61766-8.

Keteepe-Arachi T, Sharma S Cardiac Fibrosis in Hypertension. J. Hypertens. Manag.2017; 3 (1): 3: 023. DOI:10.23937/2474-3690/1510023.

Kalyuzhin VV, Teplyakov AT, Solovtsov MA et al. Left ventricular remodeling: one or more scenarios? Bjulleten' sibirskoj mediciny. 2016; 15 (4): 120–139. DOI: 10.20538/1682-03632016-4-120–139.

Frangogiannis NG. Cardiac fibrosis: cell biological mechanisms, molecular pathways and therapeutic opportunities. Mol. Aspects. Med. 2019; 65: 70–99. DOI: 10.1016/j.mam.2018.07.001.

Miklishanskaya SV, Mazur NA, Shestakova NV Mechanisms of myocardial fibrosis formation. Mеdicinskij sovet. 2017; 12: 75–81. DOI: org/10.21518/2079-701X-2017-12-75-81.

CiullaM,PaliottiR,HessDEchocardiographic patterns of myocardial fibrosis in hypertensive patients: Endomyocardial biopsy versus ultrasonic tissure characterization. Journal of the American Society of Echocardiography. 1997; 10 (6): 1–11.

Ovchinnikov AG, Ozhereleva MG, Ageev FT Left ventricular fibrosis: pathogenesis, diagnosis, treatment. Neotlozhnaja kardiologija. 2015; 4: 11–26.

Ma ZG, Yuan YP, Wu HM et al. Cardiac fibrosis: new insights into the pathogenesis. Int. J. Biol. Sci. 2018; 14: 1645–57. DOI: 10.7150/ ijbs.28103.

Yilmaz A, Kindermann I, Kindermann M et al. Comparative evaluation of left and right ventricular endomyocardial biopsy: differences incomplication rate and diagnostic performance. J Circulation. 2010; 122: 900-909. DOI: 10.1161/ CIRCULATIONAHA.109.924167.

Travers JG, Kamal FA, Jeffrey Robbins et al. Cardiac Fibrosis: The Fibroblast Awakens. Circ. Res. 2016;118:1021–104 DOI:10.1161/ CIRCRESAHA.115.306565.

Lindsay MM, Maxwell P, Dinn FG TIMP-1: marker of left ventricular diastolic dysfunction and fibrosis in hypertension. Hypertension. 2002; 40 (2): 136–41. DOI: 10.1161/01.hyp.0000024573.17293.23.

Tush EV, Eliseeva ТI, Khaletskaya ОV et al. Extracellular matrix markers and methods for their study (review). Sovremennye tehnologii v medicine. 2019; 11 (2): 133–149, https://doi. org/10.17691/stm2019.11.2.20.

Casals G, Fernández-Varo G, Melgar Lesmes P et. al. Factors Involved in Extracellular Matrix Turnover in Human Derived Cardiomyocytes Cell. Physiol. Biochem. 2013; 32: 1125–1136.

Osipova OA, Plaksina KG, Komisov AA et al. Pathogenetic mechanisms of myocardial extracellular matrix involvement in heart remodeling in patients with chronic heart failure. Nauchnye vedomosti Belgorodskogo gosudarstvennogo universiteta. Serija: Medicina. Farmacija. 2015; 219 (22): 18–25.

Eschalier R, Fertin M, Fay R et al. Extracellular matrix turnover biomarkers predict left ventricular remodeling after myocardial infarction (insights from the REVE-2 study). European Heart Journal. 2013; 34 (1): 4232.

Lin YH, Shiau YC, Yen RF et al. The relation between myocardial cyclic variation of integrated backscatter and serum concentrations of procollagen propeptides in hypertensive patients. Ultrasound Med. Biol. 2004; 30 (7): 885–891.

Wang X, Khalil RA. Matrix metalloproteinases, vascular remodeling, and vascular disease. Adv Pharmacol. 2018; 81: 241–330. DOI: org/10.1016/bs.apha.2017.08.002.

Jacob-Ferreira АL, Schulz R. Activation of intracellular matrix metalloproteinase-2 by reactive oxygen-nitrogen species: consequences and therapeutic strategies in the heart. Archives of Biochemistry and Biophysics. 2013; 540 (1–2): 82–93.

Papazafiropoulou A, Tentolouris N Matrix metalloproteinases and cardiovascular diseases. HIPPOKRATIA. 2009; 13 (2): 76–82.

Tuev AV, Vasilets LM, Khlynova OV et al. Role of collagen synthesis and degradation seromarkers, structural –functional heart parameters in prognosis of atrial fibrillation among patients with premature ventricular excitation syndrome. Perm Medical Journal. 2016. 33 (1): 28–34. DOI: 10.17816/pmj33128-34.

Meng X-M, Nikolic-Paterson DJ, Lan HY TGF-β: the master regulator of fibrosis. Nat. Rev. Nephrol. 2016; 12: 325–338 DOI: 10.1038/ nrneph.2016.48.

Leask А Potential therapeutic targets for cardiac fibrosis. TGFβ, angiotensin, endothelin, CCN2, and PDGF, partners in fibroblast activation. Circ. Res. 2010; 106 (11): 1675–80.

Parichatikanond W, Luangmonkong Т, Mangmool S Therapeutic targets for the treatment of Cardiac Fibrosis and Cancer: Focusing on TGF-β Signaling. Front. Cardiovasc. Med. 2020; 7: 1–18. DOI: org/10.3389/fcvm.2020.00034.

Park S, Nguyen NB, Pezhouman A et. al. Cardiac fibrosis: potential therapeutic targets The Journal of Laboratory and Clinical Medicine. 2019; 209: 121–137. DOI: org/10.1016/j.trsl.2019.03.001.

Potekhina Y. Collagen Structure and Function. Rossijskij osteopaticheskij zhurnal. 2016; (1–2): 87–99. https://doi.org/10.32885/22200975-2016-1-2-87-99.

Schwartzenberg S, Redfi eld MM, From AM et al. Effects of vasodilation in heart failure with preserved or reduced ejection fraction implications of distinct pathophysiologies on response to therapy. J. Am. Coll. Cardiol. 2012; 59: 442–51. DJO: 10.1016/j. jacc.2011.09.062.

El-Aziz TA, Mohamed RH Matrix metalloproteinase -9 polymorphism and outcome after acute myocardial infarction. Int. J. Cardiol. 2017; 15 (227): 524–528.

De Boer IH, Rue TC, Hall YN et al. Temporal trends in the prevalence of diabetic kidney disease in the United States. J. Am. Med. Assoc. 2011; 305 (24): 2532–2539. DOI: 10.1001/ jama.2011.861.

Afkarian M, Zelnick LR, Ruzinski J Urine matrix metalloproteinase-7 and risk of kidney disease progression and mortality in type 2 diabetes J. Diabetes Complications. 2015; 29: 1024–1031.

He T, Wang J, Wang XL et al. Association between the matrix metalloproteinase-9 rs3918242 poly-morphism and ischemic stroke susceptibility: a meta-analysis.J. Stroke Cerebrovasc. Dis. 2017; 26 (5): 1136–1143.

Mittal B, Mishra A, Srivastava A et al. Matrix metalloproteinases in coronary artery disease.Adv. Clin. Chem.2014; 64: 1–72.

Löfsjögård J, Kahan T, Díez J et al. Biomarkers of collagen type I metabolism are related to B-type natriuretic peptide, left ventricular size, and diastolic function in heart failure. Cardiovascular Medicine. 2014; 6: 463–469. DOI: 10.2459/01.JCM.0000435617.86180.0b.

Morishita T, Morishita T, Uzui H et al. Association between matrix metalloproteinase 9 and worsening heart failure events in patients with chronic heart failure. ESC Heart Fail. 2017; 4: 321–30. DOI: org/10.1002/ehf2.12137.

Bautista-Lopez NL, Schulz R Matrix metalloproteinases 2 and 9 as diagnostic tools in Chagas cardiomyopathy. Int. J. Cardiol. 2014; 177 (1): 46–47.

Hamed GM, Fattah MF Clinical relevance of matrix metalloproteinase 9 in patients with acute coronary syndrome. Clin Appl Thromb Hemost. 2015; 21: 705–11. DOI: org/10.1177/1076029614567309.

Vitlianova K, Georgieva J, Milanova M et al. Blood pressure control predicts plasma matrix metalloproteinase-9 in diabetes mellitus type II. Arch. Med. Sci. 2015; 11 (1): 85–91. DOI: 10.5114/ aoms.2015.49208.

Marchesi C, et al. Plasma levels of matrix metalloproteinases and their inhibitors in hypertension: a systematic review and metaanalysis. J.Hypertens.2012; 30: 3–6. https://doi. org/10.1097/HJH.0b013e32834d249a.

Moskalenko MI The involvement of matrix metalloproteinase genes in the formation of arterial hypertension and its complications (review). Nauchnyj rezul'tat. Medicina i farmacija. 2018; 4 (1): 53–69. DOI: 10.18413/2313-8955-2018-4-1-53-69.

Valente FM, de Andrade DO, Cosenso-Martin LN et al. Plasma Levels of Matrix metalloproteinase-9 Are Elevated in Individuals With Hypertensive Crisis. BMC Cardiovasc Disord. 2020; 20 (1): 132. DOI: 10.1186/s12872-020-01412-5.

Appel GB Angiotensin II receptor antagonists: role in hypertension, cardiovascular disease and renoprotection. Prog. Cardiovasc. Dis. 2004; 2: 105–115.

Brower GL, Levick SP, Janicki JS Inhibition of matrix metalloproteinase activity by ACE inhibitors prevents left ventricular remodeling in a rat model of heart failure. Am. J. Physiol. Heart. Circ. Physiol. 2007; 292:3057-3064.

Timms PM, Wright A, Maxwell P et al. Plasma tissue inhibitor of metalloproteinase-1 levels are elevated in essential hypertension and related to left ventricular hypertrophy. Am. J. Hypertens. 2002; 15:269-272.

Sundstrom J, Evans JC, Benjamin EJ et al. Relations of plasma total TIMP-1 levels to cardiovascular risk factors and echocardiographic measures: the Framingham heart study. EHJ. 2004; 25: 1509–16.

Wang Zuo Lei., et. al. The Correlations between Circulating Levels of Myocardial Collagen Metabolism Markers and the Pattern of Atrial Fibrillation. Anhui Medical University. – Master's thesis. – 2011;

Ahmed SH, Clark LL, Pennington WR et. al. Matrix metalloproteinases/tissue inhibitors of metalloproteinases: relationship between changes in proteolytic determinants of matrix composition and structural, functional, and clinical manifestations of hypertensive heart disease. Circulation. 2006; 113: 2089–2096.

Tayebjee MH, Nadar S, Blann AD Matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 in hypertension and their relationship to cardiovascular risk and treatment: a substudy of the Anglo-Scandinavian Cardiac Outcomes Trial (ASCOT). Am J Hypert 2004; 17: 764–769.

Hopps E, Lo Presti R, Caimi G Metalloproteases in Arterial Hypertension and their Trend after Antihyper-tensive Treatment. Kidney Blood Press Res. 2017; 42: 347–357.

Li-Saw-Hee FL, Edmunds E, Blann AD Matrix metalloproteinase-9 and tissue inhibitor metalloproteinase-1 levels in essential hypertension. Relationship to left ventricular mass and antihypertensive therapy. Int. J. Cardiol. 2003; 79: 49–52.

Li M, Yang G, Xie B, et al. Changes in matrix metalloproteinase-9 levels during progression of atrial fibrillation. J Int Med Res. 2014; 30 (2): 224.

Gai X, Lan X, Luo Z et al. Association of MMP-9 gene polymorphisms with atrial fibrillation in hypertensive heart disease patients. Clin Chim Acta. 2009; 408 (1–2): 105–109.

Saseen J, Turner C, Russell R What is the best regimen for newly diagnosed hypertension? J. Fam. Pract. 2005; 3: 281–282.

Kuwahara F, Kai H, Tokuda K et al. Transforming growth factor-beta function blocking prevents myocardial fibrosis and diastolic dysfunction in pressure-overloaded rats. Circulation. 2002; 106: 130–135.

Loperena IL, Gonzalez AH From left ventricular hypertrophy to heart failure in hypertensive patiens.J. Hypertension. 2006. 24 (4): 147–153.

Fukuda N Molecular mechanisms of the exaggerated growth of vascular smooth muscle cells in hypertension. J. Atheroscler. Thromb. 1997; 4: 65–72.

Krauser DG, Devereux RB Ventricular hypertrophy and hypertension: prognostic elements and implications for management. Herz. 2006; 31: 305–316.

Querejeta R, Varo N,B López et al. Serum carboxy-terminal propeptide of procollagen type I is a marker of myocardial fibrosis in hypertensive heart disease. Circulation. 2000; 101 (14): 1729–1735. DOI: 10.1161/01. cir.101.14.1729.

Collier P, Watson CJ, Voon V et al. Can emerging biomarkers of myocardial remodelling identify asymptomatic hypertensive patients at risk for diastolic dysfunction and diastolic heart failure? Eur. J. Heart Fail. 2011; 13 (10): 1087–1095. DOI: org/10.1093/eurjhf/hfr079

Demir M, Acarturc E, Inal T Procollagen type I carboxyterminal peptide shows ventricular hypertrophy and diastolic dysfunction in hypertensive patients. Cardiovascular pathology. 2007; 16 (2): 69–74.

Macías-Blanco C, Fatela-Cantillo D, Jiménez-Jiménez L et al. Left ventricular mass, diastolic function and collagen metabolism biomarkers in essential hypertension. Med Clin (Barc). 2011; 138 (4): 139–144. DOI: 10.1016/j.medcli.2011.05.027.

Müller-Brunotte R, Kahan T, López B et al. Myocardial fibrosis and diastolic dysfunction in patients with hypertension: results from the Swedish Irbesartan Left Ventricular Hypertrophy Investigation versus Atenolol (SILVHIA). J. Hypertens. 2007; 25 (9): 1958–1966.

Martos R., Baugh J., Ledwidge M. et al. Diastolic heart failure: evidence of increased myocardial collagen turnover linked to diastolic dysfunction. Circulation. 2007; 115 (7): 888–895.

Koh YS, Jung HO, Park MW et al. Сomparison of left ventricular hypertrophy, fibrosis and dysfunction according to various disease mechanisms such as hypertension, diabetes mellitus and chronic renal ailure. J. Cardiovasc. Ultrasound. 2009. 17 (4): 127–134.

Ihm SH, Youn HJ, Shin DI et al. Serum carboxy-terminal propeptide of type I procollagen (PIP) is a marker of diastolic dysfunction in patients with early type 2 diabetes mellitus. Int. J. Cardiol. 2007; 122 (3): 36–38.

Kolesnyk M.Yu. Diagnostic accuracy of C-terminal fragment of type I procollagen in detection of hidden heart failure in hypertensive males. Medichnі perspektivi. 2015; XX (1): 35–41.

Grigoriadi NЕ Vasilets LM, Tuev AV et al. Predicting the transformation of recurrent atrial fibrillation into chronic atrial fibrillation in patients with arterial hypertension. Arhiv vnutrennej mediciny. 2014; 2 (16): 18–22. DOI: org/10.20514/2226-6704-2014-0-2-18-22.

Downloads

Published

2020-12-20

How to Cite

Dotsenko, N. Y. ., Gerasimenko, L. V. ., Boev, S. S. ., Shekhunova, I. A. ., Molodan, A. V. ., Malinovskaya, A. Y. ., & Yatsenko, O. V. . (2020). Biomarkers of cardiac fibrosis in arterial hypertension. Modern Medical Technology, (4), 4–11. https://doi.org/10.34287/MMT.4(47).2020.1

Issue

Section

Original research