STUDY OF THE EFFECT OF CRYOPRESERVED PLACENTA EXTRACT ON THE PROCESSES OF CYTOLYSIS AND LIPID PEROXIDATION IN CCL4-INDUCED LIVER DAMAGE
DOI:
https://doi.org/10.34287/MMT.3(54).2022.9Abstract
Abstract. The search for new strategies for the correction of exogenous toxic liver lesions is due to the steady increase in the incidence of hepatitis and cirrhosis among the working population, which is an important medical and social problem.
The aim is to determine the effect of cryopreserved placenta extract (CEP) on the state of the liver of rats with tetrachloromethane (CCl4)-induced damage by indicators of lipid peroxidation (LP) and markers of cytolysis.
Materials and methods. Experimental studies were conducted on 28 male rats. Acute CCl4-induced hepatitis was reproduced by a single injection of 50.0% CCl4 oil solution. KEP was administered 1 time per day for 5 days before the introduction of CCl4. The material for the study was whole blood and liver homogenates, in which the content of reactants with thiobarbituric acid (TBA-RP), catalase activity, superoxide dismutase (SOD) activity, alanine aminotransferase (AlAt) and aspartate aminotransferase (AsAt) activity, as well as γ-glutamyl activity were determined. γ-glutamyl transpeptidases (γ-GTP) and alkaline phosphatase (AP) according to standard methods.
Results and discussion. The study showed that the content of TBA-RP in liver homogenates was lower (p<0.01) by 35.6% in rats that were prophylactically injected with CEP compared to rats with simulated CCl4-induced hepatitis without treatment (control group). An increase in the level of catalase (p=0.02) with the use of CEP was established by 33.8% and an increase in the activity of SOD (p<0.01) by 45.5% compared to the indicators of rats in the control group. It is also shown that the level of AlAt after administration of CEP decreased (p<0.001) by 56.0%, the level of AsAt decreased (p<0.001) by 48.6%, the level of γ-HTP decreased by 37.8% compared to the rats with untreated CCl4-induced hepatitis.
Conclusions. Prophylactic five-day administration of CEP leads to the leveling of CCl4-induced LP activation and signs of cytolysis syndrome.
References
Railian MV, Chumachenko TO, Makarova VI, Semishev VI. Acute Hepatitis of Unknown Etiology: the Task of Epidemiological Surveillance in Ukraine in Modern Conditions. Ukraïnsʹkij žurnal medicini, bìologìï ta sportu [Internet]. 2022;7(3):21-26. Available from: doi:10.26693/jmbs07.03.021.
Drug-, herb- and dietary supplement-induced liver injury. Archivos Argentinos de Pediatria [Internet]. 2017;115(6). Available from: doi:10.5546/aap.2017.eng.e397.
Palmer M, Regev A, Lindor K, Avigan MI, Dimick-Santos L, Treem W, et al. Consensus guidelines: best practices for detection, assessment and management of suspected acute drug-induced liver injury occurring during clinical trials in adults with chronic cholestatic liver disease. Alimentary Pharmacology & Therapeutics [Internet]. 2019;51(1):90-109. Available from: doi:10.1111/apt.15579.
Garcia-Cortes M, Robles-Diaz M, Stephens C, Ortega-Alonso A, Lucena IM, Andrade RJ. Drug induced liver injury: an update. Archives of Toxicology [Internet]. 2020;94(10):3381-3407. Available from: doi:10.1007/s00204-020-02885-1.
Hamilton LA, Collins-Yoder A, Collins RE. Drug-Induced Liver Injury. AACN Advanced Critical Care [Internet]. 2016;27(4):430-440. Available from: doi:10.4037/aacnacc2016953.
Frank D, Savir S, Gruenbaum BF, Melamed I, Grinshpun J, Kuts R, et al. Inducing Acute Liver Injury in Rats via Carbon Tetrachloride (CCl4) Exposure Through an Orogastric Tubexposure Through an Orogastric Tube. Journal of Visualized Experiments [Internet]. 2020;(158). Available from: doi:10.3791/60695.
Myshkin VA, Enikeev DA, Srubilin DV. Experimental evaluation of pyrimidine derivatives on models toxic liver damage: a review. Scientific Review. Medical Sciences. 2016; 3: 88–98.
Evtereva YA, Holtsev AN, Yurchenko TN, Blazhko EV, Bobyreva LE, Heraskyna LR, Hryshchenko VY, Hubyna-Vakulyk HY, Dvornyk YL, Zhdan VN. Placenta: cryopreservation, clinical use. Kharkiv: Harkovskij Naczionalnyj Mediczinskij Universitet; 2013.
Pogozhykh O, Prokopyuk V, Figueiredo C, Pogozhykh D. Placenta and Placental Derivatives in Regenerative Therapies: Experimental Studies, History, and Prospects. Stem Cells International [Internet]. 2018;2018:1-14. Available from: doi:10.1155/2018/4837930.
Koshurba IV, Hladkykh RV, Chyzh MO. The effect of placental cryoextract on the state of protein-lipid metabolism in the gastric mucosa in experimental stress-induced ulcers. Eastern Ukrainian Medical Journal [Internet]. 2022;10(2):155-164. Available from: doi:10.21272/eumj.2022;10(2):155-164.
Koshurba IV, Hladkykh FV, Chyzh MO. Evaluation of antiulcerogenic effect of cryoconservated placenta extract on the model of ethanol-predisonolic lesions of the gastric mucosa. Medical Science of Ukraine (MSU) [Internet]. 2022;18(2):3-9. Available from: doi:10.32345/2664-4738.2.2022.01.
Stefanov OV. Preclinical studies of drugs: guidelines. Kyiv: Avicenna; 2001.
Hladkykh F. Antiulcer activity of placental cryoextract in experimental indomethacin-induced ulcerogenesis. Acta Medica Leopoliensia [Internet]. 2021;27(3-4):68-83. Available from: doi:10.25040/aml2021.3-4.068.
Hladkykh F. Gastrocytoprotective properties of cryopreserved placenta extract in combined action of low temperatures and inhibition of cyclooxygenase. Acta Facultatis Medicae Naissensis [Internet]. 2022;39(1):48-56. Available from: doi:10.5937/afmnai39-33036.
Hladkykh FV, Chyzh MO. Nesteroidny`e protivovospalitel`ny`e sredstva: sovremennoe predstavlenie o mexanizmax povrezhdeniya pishhevaritel`nogo trakta, minusy` preparatov patogeneticheskogo lecheniya i perspektivy` biologicheskoj terapii NPVS-inducirovannoj e`zofagogastroe`nterokolonopatii. GASTROENTEROLOGY [Internet]. 2021;54(4):253-266. Available from: doi:10.22141/2308-2097.54.4.2020.216714..
Shanaida MI, Oleshchuk OM, Lykhatskyi PH, Kernychna IZ. Doslidzhennia hepatoprotektornoi aktyvnosti ridkoho ekstraktu travy chaberu sadovoho pry tetrakhlormetanovomu hepatyti. Farmatsevtychnyi chasopys [Internet]. 2017;(2). Available from: doi:10.11603/2312-0967.2017.2.7899.
Asakawa T, Matsushita S. Coloring conditions of thiobarbituric acid test for detecting lipid hydroperoxides. Lipids [Internet]. 1980;15(3):137-140. Available from: doi:10.1007/bf02540959.
Chevary S, Chaba I, Sekei Y. The role of superoxide reductase in the oxidative processes of the cell and the method for determining it in biological material. Laboratory work. 1985;11: 678-681.
Korolyuk MA, Ivanova LK, Mayorova IG, Tokareva VA. Metod opredeleniya aktivnosti katalazy. Laboratornoye delo. 1988;4:44-47.
Kamyshnikov VS. Handbook of clinical and biochemical research and laboratory diagnostics. Moskva: MEDpress-inform; 2009.
Bessey OA, Lowry OH, Brock MJ. A method for the rapid determination of alkaline phosphatase with five cubic millimeters of serum. Journal of Biological Chemistry [Internet]. 1946;164(1):321-329. Available from: doi:10.1016/s0021-9258(18)43072-4.
Szasz G. A kinetic photometric method for serum γ-glutamyltransferase. Clinical Chemistry. 1969; 15 (2): 124–36.
Szasz G. New substrates for measuring gamma-glutamyl transpeptidase activity. Zeitschrift für Klinische Chemie und Klinische Biochemie. 1974; 12 (5): 228–33.
Zar JH. Biostatistical analysis (5 ed.). Prentice-Hall, Englewood. 2014. 960 р.
Futorny SM, Osadchaya OI, Shmatova EA. The informative value of calculated hematological indices in the prognosis of the development of overtraining in professional athletes. Sports medicine and physical rehabilitation. 2016; 2: 13–19 [Ukrainian].