The main factors that improve gut microbiota composition
DOI:
https://doi.org/10.14739/mmt.2024.2.298841Keywords:
probiotics, prebiotics, synbiotics, gastrointestinal microbiome, metabolomics, coronary artery diseaseAbstract
The aim is to observe and compare the main factors that can improve gut microbiota composition.
Materials and methods. The literature study research was performed in PubMed and Google Scholar electronic databases. We assessed more than 300 studies, data from 65 of which were included in this review. They are presented in three tables: nonpharmacological influence on gut microbiota composition, drugs impact on gut microbiota, and medicines prescribed for gut microbiota correction.
Results. On the one hand, non-pharmacological methods of gut microbiota improvement are the safest and the most traditional: healthy diet and physical activity, good sleep, avoiding stress and bad habits, but they are the most difficult for patients’ fulfillment and doctors’ observation. All listed are the components of a healthy way of life and should be followed by everybody. The most prescribed drugs have a significant influence on gut microbiota composition, so physicians should consider their effects in prescriptions. They are antibiotics, steroids and non-steroids, proton pump inhibitors, laxatives, antidepressants, etc.
On the other hand, despite the diversity of available medicines (prebiotics, probiotics, paraprobiotics, postbiotics, synbiotics, and antibiotics) that can be used for gut microbiota improvement, all of them are under investigation and need further evaluation. The trendiest medicines for today are paraprobiotics and postbiotics. Paraprobiotics are represented by heat / ultraviolet / sonication Lactobacillus spp., Bifidobacterium spp., and Saccharomyces strains. Postbiotics are performed by short-chain fatty acids, secreted biosurfactants, secreted proteins, organic acids, amino acids, bacteriocins, vitamins, and peptides. Most of the data on their pharmacodynamics is based on animal studies or experimental research, so they need further investigations. Fecal gut microbiota transplantation is also an up-to-date method for multiple disease correction but is approved only for the treatment of recurrent and refractory infections caused by Clostridium difficile.
Conclusions. Gut microbiota composition improvement methods are an up-to-date topic for practical medicine because gut microbiota changes are closely linked with host health status. Gut microbiota violations lead to metabolic, cardiovascular, neurological, inflammatory disorders, etc. Nowadays the healthy way of life is the best gut microbiota composition improvement method, but prebiotics, probiotics, paraprobiotics, postbiotics, synbiotics, antibiotics supplementation, and fecal microbiota transplantation also take place and have their indisputable advantages in special cases. Unfortunately, most pharmacological methods of gut microbiota modulation have a weak evidence base. Therefore, this question needs further research in appropriate patient groups with long-term monitoring.
References
Bordenstein SR, Theis KR. Host Biology in Light of the Microbiome: Ten Principles of Holobionts and Hologenomes. PLoS Biol. 2015;13(8):e1002226. doi: https://doi.org/10.1371/journal.pbio.1002226
Inda MC, Joshi S, Wang T, Bolaender A, Gandu S, Koren Iii J, et al. The epichaperome is a mediator of toxic hippocampal stress and leads to protein connectivity-based dysfunction. Nat Commun. 2020;11(1):319. doi: https://doi.org/10.1038/s41467-019-14082-5
Forkosh E, Ilan Y. The heart-gut axis: new target for atherosclerosis and congestive heart failure therapy. Open Heart. 2019;6(1):e000993. doi: https://doi.org/10.1136/openhrt-2018-000993
Hou K, Wu ZX, Chen XY, Wang JQ, Zhang D, Xiao C, et al. Microbiota in health and diseases. Signal Transduct Target Ther. 2022;7(1):135. doi: https://doi.org/10.1038/s41392-022-00974-4
Gebrayel P, Nicco C, Al Khodor S, Bilinski J, Caselli E, Comelli EM, et al. Microbiota medicine: towards clinical revolution. J Transl Med. 2022;20(1):111. doi: https://doi.org/10.1186/s12967-022-03296-9
Mamic P, Snyder M, Tang WH. Gut Microbiome-Based Management of Patients With Heart Failure: JACC Review Topic of the Week. J Am Coll Cardiol. 2023;81(17):1729-39. doi: https://doi.org/10.1016/j.jacc.2023.02.045
Vich Vila A, Collij V, Sanna S, Sinha T, Imhann F, Bourgonje AR, et al. Impact of commonly used drugs on the composition and metabolic function of the gut microbiota. Nat Commun. 2020;11(1):362. doi: https://doi.org/10.1038/s41467-019-14177-z
Trøseid M, Andersen GØ, Broch K, Hov JR. The gut microbiome in coronary artery disease and heart failure: Current knowledge and future directions. EBioMedicine. 2020;52:102649. doi: https://doi.org/10.1016/j.ebiom.2020.102649
Liu H, Chen X, Hu X, Niu H, Tian R, Wang H, et al. Alterations in the gut microbiome and metabolism with coronary artery disease severity. Microbiome. 2019;7(1):68. doi: https://doi.org/10.1186/s40168-019-0683-9
Takiishi T, Fenero CIM, Câmara NOS. Intestinal barrier and gut microbiota: Shaping our immune responses throughout life. Tissue Barriers. 2017;5(4):e1373208. doi: https://doi.org/10.1080/21688370.2017.1373208
Lyzohub VH, Kramarova VN, Melnychuk IO. [Role of intestinal microbiota changes in cardiovascular diseases pathogenesis]. Zaporozhye medical journal. 2019;(5):672-8. Ukrainian. doi: https://doi.org/10.14739/2310-1210.2019.5.179462
Adak A, Khan MR. An insight into gut microbiota and its functionalities. Cell Mol Life Sci. 2019;76(3):473-93. doi: https://doi.org/10.1007/s00018-018-2943-4
Fong W, Li Q, Yu J. Gut microbiota modulation: a novel strategy for prevention and treatment of colorectal cancer. Oncogene. 2020;39(26):4925-43. doi: https://doi.org/10.1038/s41388-020-1341-1
Bibbò S, Ianiro G, Giorgio V, Scaldaferri F, Masucci L, Gasbarrini A, et al. The role of diet on gut microbiota composition. Eur Rev Med Pharmacol Sci. 2016;20(22):4742-9.
Campaniello D, Corbo MR, Sinigaglia M, Speranza B, Racioppo A, Altieri C, et al. How Diet and Physical Activity Modulate Gut Microbiota: Evidence, and Perspectives. Nutrients. 2022;14(12):2456. doi: https://doi.org/10.3390/nu14122456
Losno EA, Sieferle K, Perez-Cueto FJA, Ritz C. Vegan Diet and the Gut Microbiota Composition in Healthy Adults. Nutrients. 2021;13(7):2402. doi: https://doi.org/10.3390/nu13072402
Kahleova H, Rembert E, Alwarith J, Yonas WN, Tura A, Holubkov R, et al. Effects of a Low-Fat Vegan Diet on Gut Microbiota in Overweight Individuals and Relationships with Body Weight, Body Composition, and Insulin Sensitivity. A Randomized Clinical Trial. Nutrients. 2020;12(10):2917. doi: https://doi.org/10.3390/nu12102917
Argyridou S, Davies MJ, Biddle GJ, Bernieh D, Suzuki T, Dawkins NP, et al. Evaluation of an 8-Week Vegan Diet on Plasma Trimethylamine-N-Oxide and Postchallenge Glucose in Adults with Dysglycemia or Obesity. J Nutr. 2021;151(7):1844-53. doi: https://doi.org/10.1093/jn/nxab046
Codella R, Luzi L, Terruzzi I. Exercise has the guts: How physical activity may positively modulate gut microbiota in chronic and immune-based diseases. Dig Liver Dis. 2018;50(4):331-41. doi: https://doi.org/10.1016/j.dld.2017.11.016
Argyridou S, Bernieh D, Henson J, Edwardson CL, Davies MJ, Khunti K, et al. Associations between physical activity and trimethylamine N-oxide in those at risk of type 2 diabetes. BMJ Open Diabetes Res Care. 2020;8(2):e001359. doi: https://doi.org/10.1136/bmjdrc-2020-001359
Neroni B, Evangelisti M, Radocchia G, Di Nardo G, Pantanella F, Villa MP, et al. Relationship between sleep disorders and gut dysbiosis: what affects what? Sleep Med. 2021;87:1-7. doi: https://doi.org/10.1016/j.sleep.2021.08.003
Molina-Torres G, Rodriguez-Arrastia M, Roman P, Sanchez-Labraca N, Cardona D. Stress and the gut microbiota-brain axis. Behav Pharmacol. 2019;30(2 and 3-Spec Issue):187-200. doi: https://doi.org/10.1097/FBP.0000000000000478
Fan J, Zhou Y, Meng R, Tang J, Zhu J, Aldrich MC, et al. Cross-talks between gut microbiota and tobacco smoking: a two-sample Mendelian randomization study. BMC Med. 2023;21(1):163. doi: https://doi.org/10.1186/s12916-023-02863-1
Antinozzi M, Giffi M, Sini N, Gallè F, Valeriani F, De Vito C, et al. Cigarette Smoking and Human Gut Microbiota in Healthy Adults: A Systematic Review. Biomedicines. 2022;10(2):510. doi: https://doi.org/10.3390/biomedicines10020510
Engen PA, Green SJ, Voigt RM, Forsyth CB, Keshavarzian A. The Gastrointestinal Microbiome: Alcohol Effects on the Composition of Intestinal Microbiota. Alcohol Res. 2015;37(2):223-36.
Ianiro G, Tilg H, Gasbarrini A. Antibiotics as deep modulators of gut microbiota: between good and evil. Gut. 2016;65(11):1906-15. doi: https://doi.org/10.1136/gutjnl-2016-312297
Ramirez J, Guarner F, Bustos Fernandez L, Maruy A, Sdepanian VL, Cohen H. Antibiotics as Major Disruptors of Gut Microbiota. Front Cell Infect Microbiol. 2020;10:572912. doi: https://doi.org/10.3389/fcimb.2020.572912
Maseda D, Ricciotti E. NSAID-Gut Microbiota Interactions. Front Pharmacol. 2020;11:1153. doi: https://doi.org/10.3389/fphar.2020.01153
Gibson GR, Hutkins R, Sanders ME, Prescott SL, Reimer RA, Salminen SJ, et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol. 2017;14(8):491-502. doi: https://doi.org/10.1038/nrgastro.2017.75
Wang X, Yue H, Zhang H, Wan L, Ji S, Geng C. Preventive Effects of Long-Term Intake of Plant Oils With Different Linoleic Acid/Alpha-Linolenic Acid Ratios on Acute Colitis Mouse Model. Front Nutr. 2022;9:788775. doi: https://doi.org/10.3389/fnut.2022.788775
Xie J, Li LF, Dai TY, Qi X, Wang Y, Zheng TZ, et al. Short-Chain Fatty Acids Produced by Ruminococcaceae Mediate α-Linolenic Acid Promote Intestinal Stem Cells Proliferation. Mol Nutr Food Res. 2022;66(1):e2100408. doi: https://doi.org/10.1002/mnfr.202100408
Mercola J, D'Adamo CR. Linoleic Acid: A Narrative Review of the Effects of Increased Intake in the Standard American Diet and Associations with Chronic Disease. Nutrients. 2023;15(14):3129. doi: https://doi.org/10.3390/nu15143129
Djuricic I, Calder PC. Polyunsaturated fatty acids and metabolic health: novel insights. Curr Opin Clin Nutr Metab Care. 2022;25(6):436-42. doi: https://doi.org/10.1097/MCO.0000000000000865
Fu Y, Wang Y, Gao H, Li D, Jiang R, Ge L, et al. Associations among Dietary Omega-3 Polyunsaturated Fatty Acids, the Gut Microbiota, and Intestinal Immunity. Mediators Inflamm. 2021;2021:8879227. doi: https://doi.org/10.1155/2021/8879227
Molendi-Coste O, Legry V, Leclercq IA. Why and How Meet n-3 PUFA Dietary Recommendations? Gastroenterol Res Pract. 2011;2011:364040. doi: https://doi.org/10.1155/2011/364040
Hughes RL, Alvarado DA, Swanson KS, Holscher HD. The Prebiotic Potential of Inulin-Type Fructans: A Systematic Review. Adv Nutr. 2022;13(2):492-529. doi: https://doi.org/10.1093/advances/nmab119
Okburan G, Kızıler S. Human milk oligosaccharides as prebiotics. Pediatr Neonatol. 2023;64(3):231-8. doi: https://doi.org/10.1016/j.pedneo.2022.09.017
Yang Z, Huang T, Li P, Ai J, Liu J, Bai W, et al. Dietary Fiber Modulates the Fermentation Patterns of Cyanidin-3-O-Glucoside in a Fiber-Type Dependent Manner. Foods. 2021;10(6):1386. doi: https://doi.org/10.3390/foods10061386
Schaafsma A, Mallee L, van den Belt M, Floris E, Kortman G, Veldman J, et al. The Effect of A Whey-Protein and Galacto-Oligosaccharides Based Product on Parameters of Sleep Quality, Stress, and Gut Microbiota in Apparently Healthy Adults with Moderate Sleep Disturbances: A Randomized Controlled Cross-Over Study. Nutrients. 2021;13(7):2204. doi: https://doi.org/10.3390/nu13072204
Villageliú D, Lyte M. Dopamine production in Enterococcus faecium: A microbial endocrinology-based mechanism for the selection of probiotics based on neurochemical-producing potential. PLoS One. 2018;13(11):e0207038. doi: https://doi.org/10.1371/journal.pone.0207038
Suh MG, Bae GY, Jo K, Kim JM, Hong KB, Suh HJ. Photoprotective Effect of Dietary Galacto-Oligosaccharide (GOS) in Hairless Mice via Regulation of the MAPK Signaling Pathway. Molecules. 2020;25(7):1679. doi: https://doi.org/10.3390/molecules25071679
Filosa S, Di Meo F, Crispi S. Polyphenols-gut microbiota interplay and brain neuromodulation. Neural Regen Res. 2018;13(12):2055-9. doi: https://doi.org/10.4103/1673-5374.241429
Luo C, Wei X, Song J, Xu X, Huang H, Fan S, et al. Interactions between Gut Microbiota and Polyphenols: New Insights into the Treatment of Fatigue. Molecules. 2022;27(21):7377. doi: https://doi.org/10.3390/molecules27217377
Davinelli S, Scapagnini G. Interactions between dietary polyphenols and aging gut microbiota: A review. Biofactors. 2022;48(2):274-84. doi: https://doi.org/10.1002/biof.1785
Duda-Chodak A, Tarko T. Possible Side Effects of Polyphenols and Their Interactions with Medicines. Molecules. 2023;28(6):2536. doi: https://doi.org/10.3390/molecules28062536
Cronin P, Joyce SA, O'Toole PW, O'Connor EM. Dietary Fibre Modulates the Gut Microbiota. Nutrients. 2021;13(5):1655. doi: https://doi.org/10.3390/nu13051655
Zapico A, Arboleya S, Ruiz-Saavedra S, Gómez-Martín M, Salazar N, Nogacka AM, et al. Dietary xenobiotics, (poly)phenols and fibers: Exploring associations with gut microbiota in socially vulnerable individuals. Front Nutr. 2022;9:1000829. doi: https://doi.org/10.3389/fnut.2022.1000829
Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, et al. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol. 2014;11(8):506-14. doi: https://doi.org/10.1038/nrgastro.2014.66
Azad MA, Sarker M, Li T, Yin J. Probiotic Species in the Modulation of Gut Microbiota: An Overview. Biomed Res Int. 2018;2018:9478630. doi: https://doi.org/10.1155/2018/9478630
Zawistowska-Rojek A, Tyski S. Are Probiotic Really Safe for Humans? Pol J Microbiol. 2018;67(3):251-8. doi: https://doi.org/10.21307/pjm-2018-044
Gawałko M, Agbaedeng TA, Saljic A, Müller DN, Wilck N, Schnabel R, et al. Gut microbiota, dysbiosis and atrial fibrillation. Arrhythmogenic mechanisms and potential clinical implications. Cardiovasc Res. 2022;118(11):2415-27. doi: https://doi.org/10.1093/cvr/cvab292
Kaźmierczak-Siedlecka K, Ruszkowski J, Fic M, Folwarski M, Makarewicz W. Saccharomyces boulardii CNCM I-745: A Non-bacterial Microorganism Used as Probiotic Agent in Supporting Treatment of Selected Diseases. Curr Microbiol. 2020;77(9):1987-96. doi: https://doi.org/10.1007/s00284-020-02053-9
Ma X, Tian M, Yu X, Liu M, Li B, Ren D, et al. Characterization and Preliminary Safety Evaluation of Akkermansia muciniphila PROBIO. Foods. 2024;13(3):442. doi: https://doi.org/10.3390/foods13030442
Konstanti P, Ligthart K, Fryganas C, Constantinos P, Smidt H, de Vos WM, et al. Physiology of γ-aminobutyric acid production by Akkermansia muciniphila. Appl Environ Microbiol. 2024;90(1):e0112123. doi: https://doi.org/10.1128/aem.01121-23
Yaghoubfar R, Zare BanadKoki E, Ashrafian F, Shahryari A, Kariman A, Davari M, et al. The impact of Akkermansia muciniphila and its extracellular vesicles in the regulation of serotonergic gene expression in a small intestine of mice. Anaerobe. 2023;83:102786. doi: https://doi.org/10.1016/j.anaerobe.2023.102786
Zhao X, Zhao J, Li D, Yang H, Chen C, Qin M, et al. Akkermansia muciniphila: A potential target and pending issues for oncotherapy. Pharmacol Res. 2023;196:106916. doi: https://doi.org/10.1016/j.phrs.2023.106916
Nataraj BH, Ali SA, Behare PV, Yadav H. Postbiotics-parabiotics: the new horizons in microbial biotherapy and functional foods. Microb Cell Fact. 2020;19(1):168. doi: https://doi.org/10.1186/s12934-020-01426-w
Li HY, Zhou DD, Gan RY, Huang SY, Zhao CN, Shang A, et al. Effects and Mechanisms of Probiotics, Prebiotics, Synbiotics, and Postbiotics on Metabolic Diseases Targeting Gut Microbiota: A Narrative Review. Nutrients. 2021;13(9):3211. doi: https://doi.org/10.3390/nu13093211
Cuevas-González PF, Liceaga AM, Aguilar-Toalá JE. Postbiotics and paraprobiotics: From concepts to applications. Food Res Int. 2020;136:109502. doi: https://doi.org/10.1016/j.foodres.2020.109502
Siciliano RA, Reale A, Mazzeo MF, Morandi S, Silvetti T, Brasca M. Paraprobiotics: A New Perspective for Functional Foods and Nutraceuticals. Nutrients. 2021;13(4):1225. doi: https://doi.org/10.3390/nu13041225
Scott E, De Paepe K, Van de Wiele T. Postbiotics and Their Health Modulatory Biomolecules. Biomolecules. 2022;12(11):1640. doi: https://doi.org/10.3390/biom12111640
Panebianco C, Villani A, Pisati F, Orsenigo F, Ulaszewska M, Latiano TP, et al. Butyrate, a postbiotic of intestinal bacteria, affects pancreatic cancer and gemcitabine response in in vitro and in vivo models. Biomed Pharmacother. 2022;151:113163. doi: https://doi.org/10.1016/j.biopha.2022.113163
Maguire M, Maguire G. Gut dysbiosis, leaky gut, and intestinal epithelial proliferation in neurological disorders: towards the development of a new therapeutic using amino acids, prebiotics, probiotics, and postbiotics. Rev Neurosci. 2019;30(2):179-201. doi: https://doi.org/10.1515/revneuro-2018-0024
Wang JW, Kuo CH, Kuo FC, Wang YK, Hsu WH, Yu FJ, et al. Fecal microbiota transplantation: Review and update. J Formos Med Assoc. 2019;118 Suppl 1:S23-1. doi: https://doi.org/10.1016/j.jfma.2018.08.011