Problems and achievements in the study of metabolic bone disease in young children (literature review)

Authors

DOI:

https://doi.org/10.14739/mmt.2024.3.304470

Keywords:

children, newborns, preterm infants, neonatal osteopenia, vitamin D3, calcium, ultrasound densitometry, parathyroid hormone, calcitonin

Abstract

In recent years, intensive research on bone metabolism in early childhood has led to significant progress in understanding and characterizing disorders affecting skeletal formation. The role of vitamin D3 in improving maternal health and reducing the risk of developmental disorders in the fetus, newborn, and especially premature born infants, is an important area of research today. Therefore, understanding new pathophysiological aspects of bone formation can help optimize the diagnosis and prevention of bone metabolism disorders.

Aim. The aim of this work is to systematize and analyze scientific research data, to reveal pathophysiological mechanisms contributing to the development of metabolic bone diseases in premature infants, and to search innovative approaches to diagnosis and prevention of these disorders.

Materials and methods. The study involved reviewing and analyzing domestic and foreign literature sources using the PubMed and Scopus databases for the period 2019–2024. The literature was searched and selected using the keywords: newborns, preterm infants, neonatal osteopenia, metabolic bone disease, and ultrasound densitometry. Full-text articles from studies with evidence levels I–II were included to this review in order to systematize and summarize the findings.

Metabolic bone disease (neonatal osteopenia) presents a significant medical challenge in the care of preterm infants, especially those born with very low birth weight and sick neonates. The current requirements of the medical community are aimed to maximize bone density during growth periods, starting from the intrauterine and neonatal stages, to promote the formation and preservation of bone tissue in later life.

Conclusions. The safest and most universal screening method for assessing bone mineral density in preterm infants is quantitative ultrasound. It is expected that over the next decade, many fundamental studies will form the basis for the development of unified guidelines for the diagnosis, treatment and prevention of metabolic bone disease to improve the quality of life of children with bone metabolism disorders.

Author Biographies

L. M. Boiarska, Zaporizhzhia State Medical and Pharmaceutical University, Ukraine

MD, PhD, Professor, Head of the Department of Pediatric Diseases

L. S. Ovcharenko, Zaporizhzhia State Medical and Pharmaceutical University, Ukraine

MD, PhD, DSc, Professor of the Department of Pediatric Diseases

I. I. Redko, Zaporizhzhia State Medical and Pharmaceutical University, Ukraine

MD, PhD, DSc, Professor of the Department of Pediatric Diseases

T. S. Herasimchuk, Zaporizhzhia State Medical and Pharmaceutical University, Ukraine

MD, PhD, Associate Professor of the Department of Pediatric Diseases

T. O. Levchuk-Vorontsova, Zaporizhzhia State Medical and Pharmaceutical University, Ukraine

MD, PhD, Associate Professor of the Department of Pediatric Diseases

References

Gregson CL, Armstrong DJ, Bowden J, Cooper C, Edwards J, Gittoes NJ, et al. UK clinical guideline for the prevention and treatment of osteoporosis. Arch Osteoporos. 2022;17(1):58. doi: 10.1007/s11657-022-01061-5

Ramchand SK, Leder BZ. Sequential Therapy for the Long-Term Treatment of Postmenopausal Osteoporosis. J Clin Endocrinol Metab. 2024;109(2):303-11. doi: 10.1210/clinem/dgad496

Foessl I, Dimai HP, Obermayer-Pietsch B. Long-term and sequential treatment for osteoporosis. Nat Rev Endocrinol. 2023;19(9):520-33. doi: 10.1038/s41574-023-00866-9

Cuadrado-Soto E, López-Sobaler AM, Jiménez-Ortega AI, Aparicio A, Bermejo LM, Hernández-Ruiz Á, et al. Usual Dietary Intake, Nutritional Adequacy and Food Sources of Calcium, Phosphorus, Magnesium and Vitamin D of Spanish Children Aged One to <10 Years. Findings from the EsNuPI Study. Nutrients. 2020;12(6):1787. doi: 10.3390/nu12061787

Masztalerz-Kozubek D, Zielinska-Pukos MA, Hamulka J. Maternal Diet, Nutritional Status, and Birth-Related Factors Influencing Offspring’s Bone Mineral Density: A Narrative Review of Observational, Cohort, and Randomized Controlled Trials. Nutrients. 2021;13(7):2302. doi: 10.3390/nu13072302

de Lamas C, de Castro MJ, Gil-Campos M, Gil Á, Couce ML, Leis R. Effects of Dairy Product Consumption on Height and Bone Mineral Content in Children: A Systematic Review of Controlled Trials. Adv Nutr. 2019;10(suppl_2):S88-S96. doi: 10.1093/advances/nmy096

Shaker JL, Deftos L. Calcium and Phosphate Homeostasis. 2023 May 17. In: Feingold KR, Anawalt B, Blackman MR, Boyce A, Chrousos G, Corpas E, et al, editors. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2000. PMID: 25905252.

Carpenter TO. Primary Disorders of Phosphate Metabolism. 2022 Jun 8. In: Feingold KR, Anawalt B, Blackman MR, Boyce A, Chrousos G, Corpas E, et al, editors. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2000. PMID: 25905395.

Liberman U, Bikle DD. Disorders in the Action of Vitamin D. 2023 Jul 6. In: Feingold KR, Anawalt B, Blackman MR, Boyce A, Chrousos G, Corpas E, et al, editors. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2000. PMID: 25905373.

Chinoy A, Mughal MZ, Padidela R. Metabolic bone disease of prematurity-National survey of current neonatal and paediatric endocrine approaches. Acta Paediatr. 2021;110(6):1855-62. doi: 10.1111/apa.15654

Perrone S, Caporilli C, Grassi F, Ferrocino M, Biagi E, Dell’Orto V, et al. Prenatal and Neonatal Bone He alth: Updated Review on Early Identification of Newborns at High Risk for Osteopenia. Nutrients. 2023;15(16):3515. doi: 10.3390/nu15163515

Wang K, Ren Y, Lin S, Jing Y, Ma C, Wang J, et al. Osteocytes but not osteoblasts directly build mineralized bone structures. Int J Biol Sci. 2021;17(10):2430-48. doi: 10.7150/ijbs.61012

Breeland G, Sinkler MA, Menezes RG. Embryology, Bone Ossification. 2023 May 1. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024. PMID: 30969540.

Kim JM, Lin C, Stavre Z, Greenblatt MB, Shim JH. Osteoblast-Osteoclast Communication and Bone Homeostasis. Cells. 2020;9(9):2073. doi: 10.3390/cells9092073

Dimas A, Politi A, Bargiota A, Panoskaltsis T, Vlahos NF, Valsamakis G. The Gestational Effects of Maternal Bone Marker Molecules on Fetal Growth, Metabolism and Long-Term Metabolic Health: A Systematic Review. Int J Mol Sci. 2022;23(15):8328. doi: 10.3390/ijms23158328

Faienza MF, D’Amato E, Natale MP, Grano M, Chiarito M, Brunetti G, et al. Metabolic Bone Disease of Prematurity: Diagnosis and Management. Front Pediatr. 2019;7:143. doi: 10.3389/fped.2019.00143

Kovacs CS. Calcium, phosphorus, and bone metabolism in the fetus and newborn. Early Hum Dev. 2015;91(11):623-8. doi: 10.1016/j.earlhumdev.2015.08.007

Šromová V, Sobola D, Kaspar P. A Brief Review of Bone Cell Function and Importance. Cells. 2023;12(21):2576. doi: 10.3390/cells12212576

Arshad R, Sameen A, Murtaza MA, Sharif HR, Iahtisham-Ul-Haq, Dawood S, et al. Impact of vitamin D on maternal and fetal health: A review. Food Sci Nutr. 2022;10(10):3230-40. doi: 10.1002/fsn3.2948

Simner CL, Ashley B, Cooper C, Harvey NC, Lewis RM, Cleal JK. Investigating a suitable model for the study of vitamin D mediated regulation of human placental gene expression. J Steroid Biochem Mol Biol. 2020;199:105576. doi: 10.1016/j.jsbmb.2019.105576

Zhang Q, Zhang C, Wang Y, Zhao J, Li H, Shen Q, et al. Relationship of maternal obesity and vitamin D concentrations with fetal growth in early pregnancy. Eur J Nutr. 2022;61(2):915-24. doi: 10.1007/s00394-021-02695-w

Judistiani RT, Madjid TH, Irianti S, Natalia YA, Indrati AR, Ghozali M, et al. Association of first trimester maternal vitamin D, ferritin and hemoglobin level with third trimester fetal biometry: result from cohort study on vitamin D status and its impact during pregnancy and childhood in Indonesia. BMC Pregnancy Childbirth. 2019;19(1):112. doi: 10.1186/s12884-019-2263-1

Rayannavar A, Calabria AC. Screening for Metabolic Bone Disease of prematurity. Semin Fetal Neonatal Med. 2020;25(1):101086. doi: 10.1016/j.siny.2020.101086

Tsymbal AY, Kotlova YV. [Assessment of risk factors for osteopenia development in premature babies]. Modern medical technology. 2023;(4):27-36. Ukrainian. doi: 10.34287/MMT.4(59).2023.4

Ministry of Health of Ukraine. [Unified clinical protocol of the secondary (specialized) and tertiary (highly specialized) medical care “Parenteral nutrition newborn children”]. Order dated 2022 Apr 18, No. 650. [Internet]. 2022 [cited 2024 Apr 12]. Ukrainian. Available from: https://www.dec.gov.ua/wp-content/uploads/2022/04/2022_650_ykpmd_pex_novonar.pdf

Wang J, Zhao Q, Chen B, Sun J, Huang J, Meng J, et al. Risk factors for metabolic bone disease of prematurity: A meta-analysis. PLoS One. 2022;17(6):e0269180. doi: 10.1371/journal.pone.0269180

Torró-Ferrero G, Fernández-Rego FJ, Agüera-Arenas JJ, Gomez-Conesa A. Effect of physiotherapy on the promotion of bone mineralization in preterm infants: a randomized controlled trial. Sci Rep. 2022;12(1):11680. doi: 10.1038/s41598-022-15810-6

Kavurt S, Demirel N, Yücel H, Unal S, Yıldız YT, Bas AY. Evaluation of radiologic evidence of metabolic bone disease in very low birth weight infants at fourth week of life. J Perinatol. 2021;41(11):2668-73. doi: 10.1038/s41372-021-01065-y

Chacham S, Pasi R, Chegondi M, Ahmad N, Mohanty SB. Metabolic Bone Disease in Premature Neonates: An Unmet Challenge. J Clin Res Pediatr Endocrinol. 2020;12(4):332-9. doi: 10.4274/jcrpe.galenos.2019.2019.0091

Nuti R, Brandi ML, Checchia G, Di Munno O, Dominguez L, Falaschi P, et al. Guidelines for the management of osteoporosis and fragility fractures. Intern Emerg Med. 2019;14(1):85-102. doi: 10.1007/s11739-018-1874-2

Dursun M, Ozcabi B, Sariaydin M. Factors Affecting Metabolic Bone Disease of Prematurity: Is Hypothyroxinemia Included? Sisli Etfal Hastan Tip Bul. 2022;56(1):84-90. doi: 10.14744/SEMB.2021.99076

Montaner Ramón A. Risk factors of bone mineral metabolic disorders. Semin Fetal Neonatal Med. 2020;25(1):101068. doi: 10.1016/j.siny.2019.101068

Xu X, Ma H, Cheng S, Xue J. Effect of early preventive supplementation with calcium and phosphorus on metabolic bone disease in premature infants. BMC Pediatr. 2024;24(1):171. doi: 10.1186/s12887-024-04654-w

El Demellawy D, Davila J, Shaw A, Nasr Y. Brief Review on Metabolic Bone Disease. Acad Forensic Pathol. 2018;8(3):611-40. doi: 10.1177/1925362118797737

Kralick AE, Zemel BS. Evolutionary Perspectives on the Developing Skeleton and Implications for Lifelong Health. Front Endocrinol (Lausanne). 2020;11:99. doi: 10.3389/fendo.2020.00099

Shalof H, Dimitri P, Shuweihdi F, Offiah AC. “Which skeletal imaging modality is best for assessing bone health in children and young adults compared to DXA? A systematic review and meta-analysis”. Bone. 2021;150:116013. doi: 10.1016/j.bone.2021.116013

Ramot R, Kachhawa G, Kulshreshtha V, Varshney S, Sankar MJ, Devasenathipathy K, Sreenivas V, Khadgawat R. Bone Mass in Newborns Assessed by DXA – A Systematic Review and Meta-analysis. Indian J Endocrinol Metab. 2019;23(2):198-205. doi: 10.4103/ijem.IJEM_681_18

Jiang H, Guo J, Li J, Li C, Du W, Canavese F, et al. Artificial Neural Network Modeling to Predict Neonatal Metabolic Bone Disease in the Prenatal and Postnatal Periods. JAMA Netw Open. 2023;6(1):e2251849. doi: 10.1001/jamanetworkopen.2022.51849

Official positions 2019 – Pediatric. Skeletal Health Assessment in Children from Infancy to Adolescence [Internet]. ISCD. 2019 [cited 2024 Aug 12]. Available from: https://iscd.org/wp-content/uploads/2021/09/2019-Official-Positions-Pediatric-1.pdf

Cerar S, Paro-Panjan D, Soltirovska-Šalamon A. The role of quantitative ultrasound in diagnosing severe bone metabolic diseases in newborns. Front Pediatr. 2023;11:1109553. doi: 10.3389/fped.2023.1109553

Loxton P, Narayan K, Munns CF, Craig ME. Bone Mineral Density and Type 1 Diabetes in Children and Adolescents: A Meta-analysis. Diabetes Care. 2021;44(8):1898-1905. doi: 10.2337/dc20-3128

Miyamoto T, Miyakoshi K, Sato Y, Kasuga Y, Ikenoue S, Miyamoto K, et al. Changes in bone metabolic profile associated with pregnancy or lactation. Sci Rep. 2019;9(1):6787. doi: 10.1038/s41598-019-43049-1

Pettifor JM, Thandrayen K. Metabolic Bone Disease of Prematurity. Indian Pediatr. 2022;59(11):833-4.

Anderson-Berry A, Thoene M, Wagner J, Lyden E, Jones G, Kaufmann M, et al. Randomized trial of two doses of vitamin D3 in preterm infants <32 weeks: Dose impact on achieving desired serum 25(OH)D3 in a NICU population. PLoS One. 2017;12(10):e0185950. doi: 10.1371/journal.pone.0185950

Angelika D, Ugrasena ID, Etika R, Rahardjo P, Bos AF, Sauer PJ. The incidence of osteopenia of prematurity in preterm infants without phosphate supplementation: A prospective, observational study. Medicine (Baltimore). 2021;100(18):e25758. doi: 10.1097/MD.0000000000025758

Grover M, Ashraf AP, Bowden SA, Calabria A, Diaz-Thomas A, Krishnan S, et al. Invited Mini Review Metabolic Bone Disease of Prematurity: Overview and Practice Recommendations. Horm Res Paediatr. 2024 Jan 11. doi: 10.1159/000536228

Additional Files

Published

2024-09-30

How to Cite

Boiarska, L. M., Ovcharenko, L. S., Redko, I. I., Herasimchuk, T. S., & Levchuk-Vorontsova, T. O. (2024). Problems and achievements in the study of metabolic bone disease in young children (literature review). Modern Medical Technology, 16(3), 228–234. https://doi.org/10.14739/mmt.2024.3.304470

Issue

Section

Reviews of literature