The role of lactate in the body of martial artists during physical activity: a new look at the problem
DOI:
https://doi.org/10.14739/mmt.2025.1.314534Keywords:
martial artists, lactate, delayed onset muscle soreness (DOMS), oxidative stress, inflammationAbstract
Aim. To conduct a modern semantic analysis of the results of our own research and literature data on the physiological significance of increased lactate level in skeletal muscles during physical activity in martial artists.
Materials and methods. This study used bibliosemantic, analytical, logical, and generalization methods. The bibliographic databases of life sciences and biomedical information MEDLINE, EMBASE, Medline (PubMed), Web of Science, and Cochrane Central were searched to find publications in English that matched the research keywords. The authors carried out an independent search and selection of articles, assessment of data quality, compliance of the presentation and interpretation with the main idea of the study, with the formation of the final list of references.
Results. For many years, the role of lactate in the formation of physical fatigue and delayed muscle soreness in martial artists and other athletes remained unknown. There has been a lot of speculation and competing concepts. Over the past 20 years, due to the successes of modern biochemistry, physiology, and molecular pharmacology, subtle molecular-biochemical mechanisms of delayed muscle soreness formation after muscle loading have been revealed. However, a holistic attitude to the role of lactate has not been formulated. We analyzed the results of modern studies, which showed that oxidative stress, inflammation, and a decrease in cytoprotective proteins, in particular HSP70, but not the accumulation of lactate, are more important in the formation of delayed onset muscle soreness (DOMS).
Conclusions. Accumulation of lactate in muscle cells with its subsequent release into the bloodstream is considered to be much more positive than negative factor, and therefore the views on the increase of lactate content and its assessment as an enemy of athletes, including martial artists, should be reconsidered.
References
Sonkodi B, Berkes I, Koltai E. Have we looked in the wrong direction for more than 100 years? Delayed onset muscle soreness is, in fact, neural microdamage rather than muscle damage. Antioxidants (Basel). 2020;9(3):212. doi: https://doi.org/10.3390/antiox9030212
Sonkodi B. Should we void lactate in the pathophysiology of delayed onset muscle soreness? Not so fast! Let's see a neurocentric view! Metabolites. 2022;9(12):857. doi: https://doi.org/10.3390/metabo12090857
Drozdowski LA, Thomson AB. Intestinal sugar transport. World J Gastroenterol. 2006;11(12):1657-70. doi: https://doi.org/10.3748/wjg.v12.i11.1657
Khattri RB, Puglise J, Ryan TE, Walter GA, Merritt ME, Barton ER. Isolated murine skeletal muscles utilize pyruvate over glucose for oxidation. Metabolomics. 2022;18(12):105. doi: https://doi.org/10.1007/s11306-022-01948-x
Levy B, Perez P, Gibot S, Gerard A. Increased muscle-to-serum lactate gradient predicts progression towards septic shock in septic patients. Intensive Care Med. 2010;36(10):1703-9. doi: https://doi.org/10.1007/s00134-010-1938-x
Cieminski K, Flis DJ, Dzik KP, Kaczor JJ, Wieckowski MR, Antosiewicz J, et al. Swim training affects on muscle lactate metabolism, nicotinamide adenine dinucleotides concentration, and the activity of NADH shuttle enzymes in a mouse model of amyotrophic lateral sclerosis. Int J Mol Sci. 2022;23(19):11504. doi: https://doi.org/10.3390/ijms231911504
Rogatzki MJ, Ferguson BS, Goodwin ML, Gladden LB. Lactate is always the end product of glycolysis. Front Neurosci. 2015;9:22. doi: https://doi.org/10.3389/fnins.2015.00022
Ferguson BS, Rogatzki MJ, Goodwin ML, Kane DA, Rightmire Z, Gladden LB. Lactate metabolism: historical context, prior misinterpretations, and current understanding. Eur J Appl Physiol. 2018;118(4):691-728. doi: https://doi.org/10.1007/s00421-017-3795-6
Brooks GA. The science and translation of lactate shuttle theory. Cell Metab. 2018;27(4):757-85. doi: https://doi.org/10.1016/j.cmet.2018.03.008
Brooks GA, Curl CC, Leija RG, Osmond AD, Duong JJ, Arevalo JA. Tracing the lactate shuttle to the mitochondrial reticulum. Exp Mol Med. 2022;54(9):1332-47. doi: https://doi.org/10.1038/s12276-022-00802-3
Chow LS, Gerszten RE, Taylor JM, Pedersen BK, van Praag H, Trappe S, et al. Reply to 'Lactate as a major myokine and exerkine'. Nat Rev Endocrinol. 2022;18(11):713. doi: https://doi.org/10.1038/s41574-022-00726-y
Rabinowitz JD, Enerbäck S. Lactate: the ugly duckling of energy metabolism. Nat Metab. 2020;2(7):566-71. doi: https://doi.org/10.1038/s42255-020-0243-4
Wender CL, Manninen M, O'Connor PJ. The Effect of Chronic Exercise on Energy and Fatigue States: A Systematic Review and Meta-Analysis of Randomized Trials. Front Psychol. 2022;13:907637. doi: https://doi.org/10.3389/fpsyg.2022.907637
Ranchordas MK, Rogerson D, Soltani H, Costello JT. Antioxidants for preventing and reducing muscle soreness after exercise: a Cochrane systematic review. Br J Sports Med. 2020;54(2):74-8. doi: https://doi.org/10.1136/bjsports-2018-099599
Engels RJ. The effect of delayed onset muscle soreness on jumping mechanics and performance [thesis]. South Dakota State University; 2017. Available from: https://openprairie.sdstate.edu/etd/1717
Vasconcelos SD, Salla RF. Resistance exercise, muscle damage and inflammatory response "what doesn’t kill you makes you stronger". Sports Med. 2018;2(2):65-7. doi: https://doi.org/10.15406/mojsm.2018.02.00048
Cheung K, Hume PA, Maxwell L. Delayed onset muscle soreness: Treatment strategies and performance factors. Sports Med. 2003;33(2):145-64. doi: https://doi.org/10.2165/00007256-200333020-00005
Mizumura K, Taguchi T. Delayed onset muscle soreness: Involvement of neurotrophic factors. J Physiol Sci. 2016;66(1):43-52. doi: https://doi.org/10.1007/s12576-015-0397-0
Fonseca LB, Brito CJ, Silva RJ, Silva-Grigoletto ME, da Silva WM Junior, Franchini E. Use of cold-water immersion to reduce muscle damage and delayed-onset muscle soreness and preserve muscle power in jiu-jitsu athletes. J Athl Train. 2016;51(7):540-9. doi: https://doi.org/10.4085/1062-6050-51.9.01
Lima Rocha JÉ, Mendes Furtado M, Mello Neto RS, da Silva Mendes AV, Brito AK, Sena de Almeida JO, et al. Effects of Fish Oil Supplementation on Oxidative Stress Biomarkers and Liver Damage in Hypercholesterolemic Rats. Nutrients. 2022;14(3):426. doi: https://doi.org/10.3390/nu14030426.
Yin Y, Wang J, Duan K, Cai H, Sun J. The effect of vibration training on delayed muscle soreness: A meta-analysis. Medicine (Baltimore). 2022;101(42):e31259. doi: https://doi.org/10.1097/MD.0000000000031259
Khataei T, Benson CJ. ASIC3 plays a protective role in DOMS through muscle acid sensation during exercise. Front Pain Res (Lausanne). 2023;4:1215197. doi: https://doi.org/10.3389/fpain.2023.121519
López-Ramírez O, González-Garrido A. The role of acid sensing ion channels in the cardiovascular function. Front Physiol. 2023;14:1194948. doi: https://doi.org/10.3389/fphys.2023.1194948
Corder KE, Newsham KR, McDaniel JL, Ezekiel UR, Weiss EP. Effects of Short-Term Docosahexaenoic Acid Supplementation on Markers of Inflammation after Eccentric Strength Exercise in Women. J Sports Sci Med. 2016;15(1):176-83.
Menzies P, Menzies C, McIntyre L, Paterson P, Wilson J, Kemi OJ. Blood lactate clearance during active recovery after an intense running bout depends on the intensity of the active recovery. J Sports Sci. 2010;28(9):975-82. doi: https://doi.org/10.1080/02640414.2010.481721
Gussoni M, Moretti S, Vezzoli A, Genitoni V, Giardini G, Balestra C, et al. Effects of electrical stimulation on delayed onset muscle soreness (DOMS): Evidences from laboratory and in-field studies. J Funct Morphol Kinesiol. 2023;8(4):146. doi: https://doi.org/10.3390/jfmk8040146
Huertas JR, Al Fazazi S, Hidalgo-Gutierrez A, López LC, Casuso RA. Antioxidant effect of exercise: Exploring the role of the mitochondrial complex I superassembly. Redox Biol. 2017;13:477-81. doi: https://doi.org/10.1016/j.redox.2017.07.009
Meng Q, Su CH. The Impact of physical exercise on oxidative and nitrosative stress: balancing the benefits and risks. Antioxidants (Basel). 2024;13(5):573. doi: https://doi.org/10.3390/antiox1305057
Belenichev I, Popazova O, Bukhtiyarova N, Savchenko D, Oksenych V, Kamyshnyi O. Modulating nitric oxide: implications for cytotoxicity and cytoprotection. Antioxidants (Basel). 2024;13(5):504. doi: https://doi.org/10.3390/antiox13050504
Lim AY, Chen YC, Hsu CC, Fu TC, Wang JS. The effects of exercise training on mitochondrial function in cardiovascular diseases: a systematic review and meta-analysis. Int J Mol Sci. 2022;23(20):12559. doi: https://doi.org/10.3390/ijms232012559
Salanova M, Schiffl G, Gutsmann M, Felsenberg D, Furlan S, Volpe P, et al. Nitrosative stress in human skeletal muscle attenuated by exercise countermeasure after chronic disuse. Redox Biol. 2013;1(1):514-26. doi: https://doi.org/10.1016/j.redox.2013.10.006
Deminice R, de Castro GS, Brosnan ME, Brosnan JT. Creatine supplementation as a possible new therapeutic approach for fatty liver disease: early findings. Amino Acids. 2016;48(8):1983-91. doi: https://doi.org/10.1007/s00726-016-2183-6
Clemente-Suárez VJ, Bustamante-Sanchez Á, Mielgo-Ayuso J, Martínez-Guardado I, Martín-Rodríguez A, Tornero-Aguilera JF. Antioxidants and sports performance. Nutrients. 2023;15(10):2371. doi: https://doi.org/10.3390/nu15102371
Gravina L, Ruiz F, Diaz E. Lekue JA, Badiola A, Irazusta J, et al. Influence of nutrient intake on antioxidant capacity, muscle damage and white blood cell count in female soccer players. J Int Soc Sports Nutr. 2012;9(1):32. doi: https://doi.org/10.1186/1550-2783-9-32
Ranchordas MK, Rogerson D, Soltani H, Costello JT. Antioxidants for preventing and reducing muscle soreness after exercise. Cochrane Database Syst Rev. 2017;12(12):CD009789. doi: https://doi.org/10.1002/14651858.CD009789.pub2
Clemente-Suárez VJ, Martín-Rodríguez A, Redondo-Flórez L, Ruisoto P, Navarro-Jiménez E, Ramos-Campo DJ, et al. Metabolic health, mitochondrial fitness, physical activity, and cancer. Cancers (Basel). 2023;15(3):814. doi: https://doi.org/10.3390/cancers15030814
Rhodes K, Braakhuis A. Performance and side effects of supplementation with N-acetylcysteine: A systematic review and meta-analysis. Sports Med. 2017;47(8):1619-36. doi: https://doi.org/10.1007/s40279-017-0677-3
Bielenichev IF, Gorchakova NA, Doroshenko EY, Samura IB, Ryzhenko VP, Bukhtiiarova NV. Use of metabolites, metabolithotropic agents and nutritional supplements in sports and sports medicine: a modern view on the problem. Modern Medical Technology. 2023;(4):76-88. https://doi.org/10.34287/MMT.4(59).2023.10
Bielenichev IF, Vіzіr VA, Mamchur VY, Kuriata OV. [Place of tiotriazoline in the gallery of modern metabolitotropic medicines]. Zaporozhye medical journal. 2019;21(1):118-28. doi: https://doi.org/10.14739/2310-1210.2019.1.155856
Kanda K, Sugama K, Hayashida H, Sakuma J, Kawakami Y, Miura S, et al. Eccentric exercise-induced delayed-onset muscle soreness and changes in markers of muscle damage and inflammation. Exerc Immunol Rev. 2013;19:72-85.
Pawłowska M, Mila-Kierzenkowska C. Effect of alpha-1 antitrypsin and irisin on post-exercise inflammatory response: a narrative review. Iran J Med Sci. 2024;49(4):205-18. doi: https://doi.org/10.30476/IJMS.2023.97480.2925
Meamarbashi A. Herbs and natural supplements in the prevention and treatment of delayed-onset muscle soreness. Avicenna J Phytomed. 2017;7(1):16-26.
Hsu CC, Tsai CC, Ko PY, Kwan TH, Liu MY, Wu PT, et al. Triptolide attenuates muscular inflammation and oxidative stress in a delayed-onset muscle soreness animal model. Int J Environ Res Public Health. 2022;19(24):16685. doi: https://doi.org/10.3390/ijerph192416685
Oku Y, Murakami K, Irie K, Hoseki J, Sakai Y. Synthesized Aβ42 caused intracellular oxidative damage, leading to cell death, via lysosome rupture. Cell Struct Funct. 2017;42(1):71-9. doi: https://doi.org/10.1247/csf.17006
Murase S., Terazawa E., Queme F. Ota H, Matsuda T, Hirate K, et al. Bradykinin and nerve growth factor play pivotal roles in muscular mechanical hyperalgesia after exercise (delayed-onset muscle soreness). J Neurosci. 2010;30(10):3752-61. doi: https://doi.org/10.1523/JNEUROSCI.3803-09.2010
Mizumura K, Taguchi T. Neurochemical mechanism of muscular pain: Insight from the study on delayed onset muscle soreness. J Physiol Sci. 2024;74(1):4. doi: https://doi.org/10.1186/s12576-023-00896-y
Gunina L. Implementation of the ergogenic action of antioxidative agents. Sporto Mokslas. 2015;81(3):2-10. doi: https://doi.org/10.15823/sm.2015.12
Köhne JL, Ormsbee MJ, McKune AJ. Supplementation strategies to reduce muscle damage and improve recovery following exercise in females: a systematic review. Sports. 2016;4(4):51. doi: https://doi.org/10.3390/sports4040051
Makaje N, Ruangthai R, Sae-Tan S. Effects of Omega-3 Supplementation on the Delayed Onset Muscle Soreness after Cycling High Intensity Interval Training in Overweight or Obese Males. J Sports Sci Med. 2024;23(2):317-25. doi: https://doi.org/10.52082/jssm.2024.317
Mackay J, Bowles E, Macgregor LJ, Prokopidis K, Campbell C, Barber E, et al. Fish oil supplementation fails to modulate indices of muscle damage and muscle repair during acute recovery from eccentric exercise in trained young males. Eur J Sport Sci. 2023;23(8):1666-76. doi: https://doi.org/10.1080/17461391.2023.2199282
Belenichev IF, Aliyeva OG, Popazova OO, Bukhtiyarova NV. Involvement of heat shock proteins HSP70 in the mechanisms of endogenous neuroprotection: the prospect of using HSP70 modulators. Front Cell Neurosci. 2023;17:1131683. doi: https://doi.org/10.3389/fncel.2023.1131683
Dos Santos RS, Veras FP, Ferreira DW, Sant'Anna MB, Lollo PCB, Cunha TM, et al. Involvement of the HSP70/TLR4/IL-6 and TNF-α pathways in delayed-onset muscle soreness. J Neurochem. 2020;155(1):29-44. doi: https://doi.org/10.1111/jnc.15006
Costa-Beber LC, Heck TG, Fiorin PBG, Ludwig MS. HSP70 as a biomarker of the thin threshold between benefit and injury due to physical exercise when exposed to air pollution. Cell Stress Chaperones. 2021 Nov;26(6):889-915. doi: https://doi.org/10.1007/s12192-021-01241-1
Manojlović V, Erčulj F. Using blood lactate concentration to predict muscle damage and jump performance response to maximal stretch-shortening cycle exercise. J Sports Med Phys Fitness. 2019;59(4):581-6. doi: https://doi.org/10.23736/S0022-4707.18.08346-9
Akinci B, Zenginler Yazgan Y, Altinoluk T. The effectiveness of three different recovery methods on blood lactate, acute muscle performance, and delayed onset muscle soreness: a randomized comparative study. J Sports Med Phys Fitness. 2020;60(3):345-54. doi: https://doi.org/10.23736/S0022-4707.19.10142-9
Bischof K, Stafilidis S, Bundschuh L, Oesser S, Baca A, König D. Reduction in systemic muscle stress markers after exercise-induced muscle damage following concurrent training and supplementation with specific collagen peptides - a randomized controlled trial. Front Nutr. 2024;11:1384112. doi: https://doi.org/10.3389/fnut.2024.1384112
Souglis A, Bourdas DI, Gioldasis A, Ispirlidis I, Philippou A, Zacharakis E, et al. Time course of performance indexes, oxidative stress, inflammation, and muscle damage markers after a female futsal match. Sports (Basel). 2023;11(7):127. doi: https://doi.org/10.3390/sports11070127
Guest NS, VanDusseldorp TA, Nelson MT, Grgic J, Schoenfeld BJ, Jenkins ND, et al. International society of sports nutrition position stand: caffeine and exercise performance. J Int Soc Sports Nutr. 2021;18(1):1. doi: https://doi.org/10.1186/s12970-020-00383-4
Burke LM. Practical considerations for bicarbonate loading and sports performance. Nestle Nutr Inst Workshop Ser. 2013;75:15-26. doi: https://doi.org/10.1159/000345814
Che K, Yang Y, Zhang J, Feng L, Xie Y, Li Q, et al. Oral pyruvate prevents high-intensity interval exercise-induced metabolic acidosis in rats by promoting lactate dehydrogenase reaction. Front Nutr. 2023;10:1096986. doi: https://doi.org/10.3389/fnut.2023.1096986
Mora Carpio AL, Mora JI. Ventilator Management. [Updated 2023, Mar 27]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan. Available from: https://www.ncbi.nlm.nih.gov/books/NBK448186/
Kyun S, Kim J, Hwang D, Jang I, Park HY, Lim K. Lactate administration induces skeletal muscle synthesis by influencing Akt/mTOR and MuRF1 in non-trained mice but not in trained mice. Physiol Rep. 2024;12(4):e15952. doi: https://doi.org/10.14814/phy2.15952
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Bielenichev I. F., Gunina L. M., Orlov O. I., Samura I. B., Doroshenko E. Yu., Danylchenko S. I., Skoryna D. Yu.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.