Changes in biochemical and molecular parameters of blood in patients with chronic generalized periodontitis during a course of treatment with interleukin-1 receptor antagonist
DOI:
https://doi.org/10.14739/mmt.2025.4.336657Keywords:
chronic periodontitis, IL-1β receptor antagonist, anakinra, anti-oxidant effectAbstract
The aim of the study was to conduct a laboratory and biochemical assessment of the complex therapy of chronic generalized periodontitis (CGP) with the inclusion of an IL-1 receptor antagonist (Anakinra) in the therapy.
Materials and methods. Examination and treatment of 60 patients with CGP of moderate severity and 30 patients with intact periodontium aged 40 to 65 years (35 women and 25 men) were conducted. Patients were divided into 2 groups: main and control, 30 people in each. Examination and treatment were carried out with the consent of the patients in accordance with GCP standards (1996) and the principles of the Declaration of Helsinki (World Medical Association – WMA, 2013). Patients with CGP of both groups received standard complex therapy for 30 days, which included oral hygiene; vector therapy; curettage; fixation of teeth in the correct position with specialized materials; anti-inflammatory and antiseptic medications. In addition, patients in the main group were prescribed Anakinra (1 mg/day) in the form of intraoral transgingival electrophoresis on both jaws (5 sessions). Biochemical studies included monitoring of the activity of lactate dehydrogenase (LDH), succinate dehydrogenase (SDH), glutathione peroxidase (GPx), glutathione reductase (GR); enzyme immunoassay of endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS), nitrotyrosine and metalloproteinase-2 (MPP-2) in the blood of patients of the control and main groups before treatment and after 30 days of treatment. Statistical processing of the results was performed using the software package Statistica for Windows 13 (StatSoft Inc., No. JPZ804I382130ARCN10-J), as well as “SPSS 16.0”, “Microsoft Excel 2003”.
Results. It was found that the additional inclusion of Anakinra in the complex treatment of CGP potentiated the anti-inflammatory effect of the therapy that was manifested in a more pronounced, compared to the control group, decrease in the level of MMP-2, and clinical signs (depth of periodontal pockets, bleeding, tooth mobility, etc.); enhanced antioxidant action, which was confirmed by a more pronounced decrease in nitrotyrosine level, an increase in GR and GPx activity (p < 0.05) compared to similar indicators in patients in the control group. The inclusion of Anakinra enhanced the anti-ischemic effect of complex therapy that was manifested in a decrease in LDH levels and an increase in SDH concentration (p < 0.05); and also contributed to a decrease in iNOS expression and an increase in eNOS expression (p < 0.05) compared to similar indicators of patients in the control group.
Conclusions. The results obtained demonstrate a promising strategy of pharmacological blockade of IL-1β receptors, which may have new prospects for the treatment of patients with CGP.
References
Gasner NS, Schure RS. Periodontal disease. [Updated 2025 May 12]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan. Available from: https://www.ncbi.nlm.nih.gov/books/NBK554590
Łasica A, Golec P, Laskus A, Zalewska M, Gędaj M, Popowska M. Periodontitis: etiology, conventional treatments, and emerging bacteriophage and predatory bacteria therapies. Front Microbiol. 2024;15:1469414. doi: https://doi.org/10.3389/fmicb.2024.1469414
Hudson D, Ayares G, Taboun Z, Malhi G, Idalsoaga F, Mortuza R, et al. Periodontal disease and cirrhosis: current concepts and future prospects. eGastroenterology. 2025;3(1):e100140. doi: https://doi.org/10.1136/egastro-2024-100140
InformedHealth.org [Internet]. Cologne, Germany: Institute for Quality and Efficiency in Health Care (IQWiG); 2006. Overview: Gingivitis and periodontitis. [Updated 2023 Aug 23]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK279593
Roshna T, Nandakumar K. Generalized aggressive periodontitis and its treatment options: case reports and review of the literature. Case Rep Med. 2012;2012:535321. doi: https://doi.org/10.1155/2012/535321
Singhrao SK, Harding A, Poole S, Kesavalu L, Crean S. Porphyromonas gingivalis Periodontal infection and its putative links with alzheimer's disease. Mediators Inflamm. 2015;2015:137357. doi: https://doi.org/10.1155/2015/137357
Mysak J, Podzimek S, Sommerova P, Lyuya-Mi Y, Bartova J, Janatova T, Prochazkova J, Duskova J. Porphyromonas gingivalis: major periodontopathic pathogen overview. J Immunol Res. 2014;2014:476068. doi: https://doi.org/10.1155/2014/476068
Bhuyan R, Bhuyan SK, Mohanty JN, Das S, Juliana N, Juliana IF. Periodontitis and its inflammatory changes linked to various systemic diseases: a review of its underlying mechanisms. Biomedicines. 2022;10(10):2659. doi: https://doi.org/10.3390/biomedicines10102659
Abdulkareem AA, Al-Taweel FB, Al-Sharqi AJ, Gul SS, Sha A, Chapple IL. Current concepts in the pathogenesis of periodontitis: from symbiosis to dysbiosis. J Oral Microbiol. 2023;15(1):2197779. doi: https://doi.org/10.1080/20002297.2023.2197779
Hashim N, Babiker R, Mohammed R, Rehman MM, Chaitanya NC, Gobara B. NLRP3 inflammasome in autoinflammatory diseases and periodontitis advance in the management. J Pharm Bioallied Sci. 2024;(Suppl 2):S1110-9. doi: https://doi.org/10.4103/jpbs.jpbs_1118_23
Xu X, Wu X, Yue G, An Q, Lou J, Yang X, et al. The role of Nod-like receptor protein 3 inflammasome activated by ion channels in multiple diseases. Mol Cell Biochem. 2023;478(6):1397-410. doi: https://doi.org/10.1007/s11010-022-04602-1
Brodzikowska A, Górska R, Kowalski J. Interleukin-1 genotype in periodontitis. Arch Immunol Ther Exp (Warsz). 2019;67(6):367-73. doi: https://doi.org/10.1007/s00005-019-00555-4
Pignatelli P, Fabietti G, Ricci A, Piattelli A, Curia MC. How Periodontal Disease and Presence of Nitric Oxide Reducing Oral Bacteria Can Affect Blood Pressure. Int J Mol Sci. 2020;21(20):7538. doi: https://doi.org/10.3390/ijms21207538.
Rinčić G, Gaćina P, Virović Jukić L, Rinčić N, Božić D, Badovinac A. Association between periodontitis and liver disease. Acta Clin Croat. 2022;60(3):510-18. doi: https://doi.org/10.20471/acc.2021.60.03.22
Abraham D, Singh A, Goyal A. Salivary levels of NLRP3 protein are significantly raised in chronic periodontitis: A systematic review and meta-analysis of clinical studies. J Indian Soc Periodontol. 2023;27(6):552-8. doi: https://doi.org/10.4103/jisp.jisp_185_23
Al-Qahtani AA, Alhamlan FS, Al-Qahtani AA. Pro-Inflammatory and Anti-Inflammatory Interleukins in Infectious Diseases: A Comprehensive Review. Trop Med Infect Dis. 2024;9(1):13. doi: https://doi.org/10.3390/tropicalmed9010013
Sholapurkar A, Sharma D, Glass B, Miller C, Nimmo A, Jennings E. Professionally delivered local antimicrobials in the treatment of patients with periodontitis – a narrative review. Dent J (Basel). 2020;9(1):2. doi: https://doi.org/10.3390/dj9010002
Elashiry M, Morandini AC, Cornelius Timothius CJ, Ghaly M, Cutler CW. Selective Antimicrobial Therapies for Periodontitis: Win the "Battle and the War". Int J Mol Sci. 2021;22(12):6459. doi: https://doi.org/10.3390/ijms22126459
Ancuţa DL, Alexandru DM, Muselin F, Cristina RT, Coman C. Assessment of the Effect on Periodontitis of Antibiotic Therapy and Bacterial Lysate Treatment. Int J Mol Sci. 2024;25(10):5432. doi: https://doi.org/10.3390/ijms25105432
Arnold DD, Yalamanoglu A, Boyman O. Systematic Review of Safety and Efficacy of IL-1-Targeted Biologics in Treating Immune-Mediated Disorders. Front Immunol. 2022;13:888392. doi: https://doi.org/10.3389/fimmu.2022.888392
Romano M, Piskin D, Kul Cinar O, Sag E. Familial Mediterranean Fever; Recent Advances, Future Prospectives. Diagnostics (Basel). 2025;15(7):813. doi: https://doi.org/10.3390/diagnostics15070813
Geng J, Wang F, Huang Z, Chen X, Wang Y. Perspectives on anti-IL-1 inhibitors as potential therapeutic interventions for severe COVID-19. Cytokine. 2021;143:155544. doi: https://doi.org/10.1016/j.cyto.2021.155544
Dmytriieva OO, Bielenichev IF, Burlaka BS. Optimisation of the composition of safe dental gel with IL-1β antagonist for the treatment of inflammatory periodontal diseases. Zaporozhye Medical Journal. 2024;26(2):134-43. doi: https://doi.org/10.14739/2310-1210.2024.2.292521
Bojarczuk A. Ethical Aspects of Human Genome Research in Sports-A Narrative Review. Genes (Basel). 2024;15(9):1216. doi: https://doi.org/10.3390/genes15091216
Park J, Park S, Kim K, Hwang W, Yoo S, Yi GS, et al. An interactive retrieval system for clinical trial studies with context-dependent protocol elements. PLoS One. 2020;15(9):e0238290. doi: https://doi.org/10.1371/journal.pone.0238290
Research must do no harm: new guidance addresses all studies relating to people. Nature. 2022;606(7914):434. doi: https://doi.org/10.1038/d41586-022-01607-0
Belenichev I, Bukhtiyarova N, Ryzhenko V, Makyeyeva L, Morozova O, Oksenych V, et al. Methodological approaches to experimental evaluation of neuroprotective action of potential drugs. Int J Mol Sci. 2024;25(19):10475. doi: https://doi.org/10.3390/ijms251910475
Pupin TI, Nemesh OM, Honta ZM, Shylivskyi IV, Moroz KA, Bumbar OI. [Modern aspects of generalized periodontitis treatment in patients with a somatic pathology]. Zaporozhye Medical Journal. 2020;22(1):122-8. Ukrainian. doi: https://doi.org/10.14739/2310-1210.2020.1.194649
Papathanasiou E, Conti P, Carinci F, Lauritano D, Theoharides TC. IL-1 Superfamily members and periodontal diseases. J Dent Res. 2020;99(13):1425-34. doi: https://doi.org/10.1177/0022034520945209
Cheng R, Wu Z, Li M, Shao M, Hu T. Interleukin-1β is a potential therapeutic target for periodontitis: a narrative review. Int J Oral Sci. 2020;12(1):2. doi: https://doi.org/10.1038/s41368-019-0068-8
Jain S, Sundar S, Haritha JS, Natanasabapathy V. Comparision of interleukin-1β concentrations in posttreatment endodontic disease and other pulpal and periapical conditions - A clinical study. J Conserv Dent Endod. 2024;27(8):843-8. doi: https://doi.org/10.4103/JCDE.JCDE_324_24
Jansson L, Lundmark A, Modin C, Gustafsson A, Yucel-Lindberg T. Levels of matrix metalloproteinase-1 (MMP-1), MMP-2, MMP-3, osteopontin, pentraxin-3, and thymic stromal lymphopoietin in crevicular fluid samples from peri-implantitis, periodontitis, and healthy sites. J Periodontal Res. 2025;60(5):473-83. doi: https://doi.org/10.1111/jre.13338
Radzki D, Negri A, Kusiak A, Obuchowski M. Matrix Metalloproteinases in the Periodontium-Vital in Tissue Turnover and Unfortunate in Periodontitis. Int J Mol Sci. 2024;25(5):2763. doi: https://doi.org/10.3390/ijms25052763
Wang Y, Huang X, He F. Mechanism and role of nitric oxide signaling in periodontitis. Exp Ther Med. 2019;18(5):3929-35. doi: https://doi.org/10.3892/etm.2019.8044
Toczewska J, Konopka T, Zalewska A, Maciejczyk M. Nitrosative stress biomarkers in the non-stimulated and stimulated saliva, as well as gingival crevicular fluid of patients with periodontitis: Review and clinical study. Antioxidants (Basel). 2020;9(3):259. doi: https://doi.org/10.3390/antiox9030259
Wang L, Lu W, Ju W, Yao W, Shi C, Yang X, et al. The salivary metabolomics analyses reveal the variable metabolites in distinct staging of periodontitis. BMC Oral Health. 2025;25(1):480. doi: https://doi.org/10.1186/s12903-025-05792-y
Toczewska J, Maciejczyk M, Zalewska A, Konopka T. Gingival fluid and saliva concentrations of selected non-enzymatic antioxidants in periodontitis. Dent Med Probl. 2022;59(4):555-64. doi: https://doi.org/10.17219/dmp/148051
Binti Badlishah Sham NI; Grant MM. Role of glutathione in neutrophil chemotaxis in periodontitis. Oral (Basel). 2023;3(4):526-38. doi: https://doi.org/10.3390/oral3040043
Liu W, Guo D. Oxidative stress in periodontitis and the application of antioxidants in treatment: a narrative review. Front Physiol. 2025;16:1485367. doi: https://doi.org/10.3389/fphys.2025.1485367
Salnykov V, Belenichev I, Makyeyeva L, Skoryna D, Oksenych V, Kamyshnyi O. Antioxidant Mechanisms of the Protective Action of Selenase in Experimental Chronic Generalized Periodontitis. Curr Issues Mol Biol. 2025;47(3):186. doi: https://doi.org/10.3390/cimb47030186
Palathingal P, Mahendra J, Annamalai PT, Varma SS, Mahendra L, Thomas L, et al. A Cross-Sectional Study of Serum Glutathione Peroxidase: An Antioxidative Marker in Chronic Periodontitis and Chronic Kidney Disease. Cureus. 2022 Feb 8;14(2):e22016. doi: https://doi.org/10.7759/cureus.22016
Kwon DH, Lee H, Park C, Hong SH, Hong SH, Kim GY, et al. Glutathione Induced Immune-Stimulatory Activity by Promoting M1-Like Macrophages Polarization via Potential ROS Scavenging Capacity. Antioxidants (Basel). 2019;8(9):413. doi: https://doi.org/10.3390/antiox8090413
Santos LL, Silva AT, Ferreira IC, Souza AV, Justino AB, Santos DW, et al. A lower serum antioxidant capacity as a distinctive feature for women with HER2+ breast cancer: A preliminary study. Cancers (Basel). 2022;14(23):5973. doi: https://doi.org/10.3390/cancers14235973
Xu F, Guo Y, Thomas SC, Saxena A, Hwang S, Vardhan M, et al. Succinate modulates oral dysbiosis and inflammation through a succinate receptor 1 dependent mechanism in aged mice. Int J Oral Sci. 2025;17(1):47. doi: https://doi.org/10.1038/s41368-025-00376-6
Guo Y, Xu F, Thomas SC, Zhang Y, Paul B, Sakilam S, et al. Targeting the succinate receptor effectively inhibits periodontitis. Cell Rep. 2022;40(12):111389. doi: 10.1016/j.celrep.2022.111389
Huang H, Li G, He Y, Chen J, Yan J, Zhang Q, et al. Cellular succinate metabolism and signaling in inflammation: implications for therapeutic intervention. Front Immunol. 2024;15:1404441. doi: https://doi.org/10.3389/fimmu.2024.1404441
Deng Y, Xiao J, Ma L, Wang C, Wang X, Huang X, et al. Mitochondrial Dysfunction in Periodontitis and Associated Systemic Diseases: Implications for Pathomechanisms and Therapeutic Strategies. Int J Mol Sci. 2024;25(2):1024. doi: https://doi.org/10.3390/ijms25021024
Jiang W, Wang Y, Cao Z, Chen Y, Si C, Sun X, et al. The role of mitochondrial dysfunction in periodontitis: from mechanisms to therapeutic strategy. J Periodontal Res. 2023;58(5):853-63. doi: https://doi.org/10.1111/jre.13152
Meng L, Wen W. Mitochondrial dysfunction in diabetic periodontitis: mechanisms and therapeutic potential. J Inflamm Res. 2025;18:115-26. doi: https://doi.org/10.2147/JIR.S492041
Iwata T, Mizoguchi Y, Yoshimoto T, Tsumura M, Sakura F, Johnson JR, et al. Monoallelic mutations in MMD2 cause autosomal dominant aggressive periodontitis. J Exp Med. 2025;222(9):e20231911. doi: https://doi.org/10.1084/jem.20231911
Bhol NK, Bhanjadeo MM, Singh AK, Dash UC, Ojha RR, Majhi S, et al. The interplay between cytokines, inflammation, and antioxidants: mechanistic insights and therapeutic potentials of various antioxidants and anti-cytokine compounds. Biomed Pharmacother. 2024;178:117177. doi: https://doi.org/10.1016/j.biopha.2024.117177
Michalak KP, Michalak AZ. Understanding chronic inflammation: couplings between cytokines, ROS, NO, Cai2+, HIF-1α, Nrf2 and autophagy. Front Immunol. 2025;16:1558263. doi: https://doi.org/10.3389/fimmu.2025.1558263
Green EA, Metz D, Galinsky R, Atkinson R, Skuza EM, Clark M, et al. Anakinra Pilot - a clinical trial to demonstrate safety, feasibility and pharmacokinetics of interleukin 1 receptor antagonist in preterm infants. Front Immunol. 2022;13:1022104. doi: https://doi.org/10.3389/fimmu.2022.1022104
Sota J, Vitale A, Insalaco A, Sfriso P, Lopalco G, Emmi G, et al. Safety profile of the interleukin-1 inhibitors anakinra and canakinumab in real-life clinical practice: a nationwide multicenter retrospective observational study. Clin Rheumatol. 2018;37(8):2233-40. doi: https://doi.org/10.1007/s10067-018-4119-x
Khani E, Shahrabi M, Rezaei H, Pourkarim F, Afsharirad H, Solduzian M. Current evidence on the use of anakinra in COVID-19. Int Immunopharmacol. 2022;111:109075. doi: https://doi.org/10.1016/j.intimp.2022.109075
Cavalli G, Dinarello CA. Anakinra Therapy for Non-cancer Inflammatory Diseases. Front Pharmacol. 2018;9:1157. doi: https://doi.org/10.3389/fphar.2018.01157. Erratum in: Front Pharmacol. 2019;10:148. doi: https://doi.org/10.3389/fphar.2019.00148
Yamanaka G, Ishida Y, Kanou K, Suzuki S, Watanabe Y, Takamatsu T, et al. Towards a treatment for neuroinflammation in epilepsy: interleukin-1 receptor antagonist, Anakinra, as a potential treatment in intractable epilepsy. Int J Mol Sci. 2021;22(12):6282. doi: https://doi.org/10.3390/ijms22126282
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 O. O. Dmytriieva, S. A. Chertov, I. F. Bielenichev, V. I. Salnykov, I. B. Samura

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The work is provided under the terms of the Public Offer and of Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This license allows an unlimited number of persons to reproduce and share the Licensed Material in all media and formats. Any use of the Licensed Material shall contain an identification of its Creator(s) and must be for non-commercial purposes only.











