Role of p38 activation in changes of nitric oxide production in rat biceps femoris muscle during metabolic syndrome

Authors

DOI:

https://doi.org/10.14739/mmt.2025.4.339402

Keywords:

muscles, nitric oxide, metabolic syndrome, NO-synthases, p38 MAPK, nitrite reductases

Abstract

Transcriptional changes in organism and muscles especially during development of metabolic syndrome (MetS) is still highly understudied. Role of p38 MAPK activation during MetS is highly debatable.

The aim of this study is to evaluate influence of administration of selective inhibitor of p38 MAPK on production and metabolism of nitric oxide in rat biceps femoris during metabolic syndrome modelling.

Materials and methods. The study was conducted on 24 mature male Wistar rats weighing 200–260 g, which were divided into 4 groups of 6 animals each: I – control group; II – MetS (received 20 % fructose for 60 days); III – SB203580 administration (received SB203580 intraperitoneally in a dose 2 mg/kg once every 3 days for 60 days); IV –SB203580 + MetS modelling. We studied activity of enzymes responsible for NOS-dependent and NOS-independent NO production and content of nitrites, peroxynitrites and nitrosothiols in rat biceps femoris.

Results. MetS modelling increased production of nitric oxide from NO-synthases and nitrtate-nitrite reductive pathway, elevated content of nitrosothiols and peroxynitrite, while SB203580 during MetS modelling attenuated these changes in production of nitric oxide and nitrosothiols and peroxynitrite content.

Conclusions. P38 MAPK activation during MetS modelling increases NOS-dependent and NOS-independent NO production and leads to accumulation of nitrosothiols and peroxynitrite in rat biceps femoris.

Author Biographies

O. Ye. Akimov, Poltava State Medical University

MD, PhD, Associate Professor of the Department of Pathophysiology

A. O. Mykytenko, Poltava State Medical University

MD, PhD, Associate Professor of the Department of Biological and Bioorganic Chemistry

V. O. Kostenko, Poltava State Medical University

MD, PhD, DSc, Professor, Head of the Department of Pathophysiology

References

Kumar R, Coggan AR, Ferreira LF. Nitric oxide and skeletal muscle contractile function. Nitric Oxide. 2022;122-123:54-61. doi: https://doi.org/10.1016/j.niox.2022.04.001

Gonzalez AM, Townsend JR, Pinzone AG, Hoffman JR. Supplementation with Nitric Oxide Precursors for Strength Performance: A Review of the Current Literature. Nutrients. 2023;15(3):660. doi: https://doi.org/10.3390/nu15030660

Andrabi SM, Sharma NS, Karan A, Shahriar SM, Cordon B, Ma B, et al. Nitric Oxide: Physiological Functions, Delivery, and Biomedical Applications. Adv Sci (Weinh). 2023;10(30):e2303259. doi: https://doi.org/10.1002/advs.202303259

Jones AM, Vanhatalo A, Seals DR, Rossman MJ, Piknova B, Jonvik KL. Dietary Nitrate and Nitric Oxide Metabolism: Mouth, Circulation, Skeletal Muscle, and Exercise Performance. Med Sci Sports Exerc. 2021;53(2):280-94. doi: https://doi.org/10.1249/MSS.0000000000002470

Zembron-Lacny A, Morawin B, Wawrzyniak-Gramacka E, Gramacki J, Jarmuzek P, Kotlega D, et al. Multiple Cryotherapy Attenuates Oxi-Inflammatory Response Following Skeletal Muscle Injury. Int J Environ Res Public Health. 2020;17(21):7855. doi: https://doi.org/10.3390/ijerph17217855

Soliman GF, Abdel-Maksoud OM, Khalifa MM, Rashed LA, Ibrahim W, Morsi H, et al. Effect of nebivolol on altered skeletal and cardiac muscles induced by dyslipidemia in rats: impact on oxidative and inflammatory machineries. Arch Physiol Biochem. 2022;128(2):463-73. doi: https://doi.org/10.1080/13813455.2019.1693599

Ortiz de Zevallos J, Woessner MN, Kelley EE. Skeletal muscle as a reservoir for nitrate and nitrite: The role of xanthine oxidase reductase (XOR). Nitric Oxide. 2022;129:102-9. doi: https://doi.org/10.1016/j.niox.2022.10.004

Nambu H, Takada S, Maekawa S, Matsumoto J, Kakutani N, Furihata T, et al. Inhibition of xanthine oxidase in the acute phase of myocardial infarction prevents skeletal muscle abnormalities and exercise intolerance. Cardiovasc Res. 2021;117(3):805-19. doi: https://doi.org/10.1093/cvr/cvaa127

Henrot P, Dupin I, Schilfarth P, Esteves P, Blervaque L, Zysman M, et al. Main Pathogenic Mechanisms and Recent Advances in COPD Peripheral Skeletal Muscle Wasting. Int J Mol Sci. 2023;24(7):6454. doi: https://doi.org/10.3390/ijms24076454

Aguilar G, Córdova F, Koning T, Sarmiento J, Boric MP, Birukov K, et al. TNF-α-activated eNOS signaling increases leukocyte adhesion through the S-nitrosylation pathway. Am J Physiol Heart Circ Physiol. 2021;321(6):H1083-H1095. doi: https://doi.org/10.1152/ajpheart.00065.2021

Cirino G, Szabo C, Papapetropoulos A. Physiological roles of hydrogen sulfide in mammalian cells, tissues, and organs. Physiol Rev. 2023;103(1):31-276. doi: https://doi.org/10.1152/physrev.00028.2021

Liu J, Aylor KW, Chai W, Barrett EJ, Liu Z. Metformin prevents endothelial oxidative stress and microvascular insulin resistance during obesity development in male rats. Am J Physiol Endocrinol Metab. 2022;322(3):E293-E306. doi: https://doi.org/10.1152/ajpendo.00240.2021

Zhang X, Dong Z, Fan H, Yang Q, Yu G, Pan E, et al. Scutellarin prevents acute alcohol-induced liver injury via inhibiting oxidative stress by regulating the Nrf2/HO-1 pathway and inhibiting inflammation by regulating the AKT, p38 MAPK/NF-κB pathways. J Zhejiang Univ Sci B. 2023;24(7):617-31. doi: https://doi.org/10.1631/jzus.B2200612

Bengal E, Aviram S, Hayek T. p38 MAPK in Glucose Metabolism of Skeletal Muscle: Beneficial or Harmful? Int J Mol Sci. 2020;21(18):6480. doi: https://doi.org/10.3390/ijms21186480

Frenkel Y, Cherno V, Kostenko H, Chopra H, Gautam RK, Kostenko V. Dietary Supplementation with Resveratrol Attenuates Serum Melatonin Level, Pro-Inflammatory Response and Metabolic Disorder in Rats Fed High-Fructose High-Lipid Diet under Round-the-Clock Lighting. Pathophysiology. 2023;30(1):37-47. doi: https://doi.org/10.3390/pathophysiology30010005

Mamikutty N, Thent ZC, Sapri SR, Sahruddin NN, Mohd Yusof MR, Haji Suhaimi F. The establishment of metabolic syndrome model by induction of fructose drinking water in male Wistar rats. Biomed Res Int. 2014;2014:263897. doi: https://doi.org/10.1155/2014/263897

Yin H, Zhang J, Lin H, Wang R, Qiao Y, Wang B, Liu F. p38 mitogen-activated protein kinase inhibition decreases TNFalpha secretion and protects against left ventricular remodeling in rats with myocardial ischemia. Inflammation. 2008;31(2):65-73. doi: https://doi.org/10.1007/s10753-007-9050-2

Zhang Y, Wang R, Fu X, Song H. Non-insulin-based insulin resistance indexes in predicting severity for coronary artery disease. Diabetol Metab Syndr. 2022;14(1):191. doi: https://doi.org/10.1186/s13098-022-00967-x

Yelins’ka AM, Akimov OY, Kostenko VO. Role of AP-1 transcriptional factor in development of oxidative and nitrosative stress in periodontal tissues during systemic inflammatory response. Ukrainian Biochemical Journal. 2019;91(1):80-5. doi: https://doi.org/10.15407/ubj91.01.080

Mykytenko A, Akimov O, Yeroshenko G, Neporada K. Phenformin attenuates the oxidative-nitrosative stress in the liver of rats under long-term ethanol administration. Ukrainian Biochemical Journal. 2024;96(3):22-30. doi: https://doi.org/10.15407/ubj96.03.022

Tain YL, Hsu CN. Metabolic Syndrome Programming and Reprogramming: Mechanistic Aspects of Oxidative Stress. Antioxidants (Basel). 2022;11(11):2108. doi: https://doi.org/10.3390/antiox11112108

Amer OE, Sabico S, Khattak MN, Al-Daghri NM. Circulating Nitric Oxide and Metabolic Syndrome in Arab Children and Adolescents: A Case-Control Study. Children (Basel). 2023;10(2):210. doi: https://doi.org/10.3390/children10020210

Xu D, Kong T, Shao Z, Liu M, Zhang R, Zhang S, et al. Orexin-A alleviates astrocytic apoptosis and inflammation via inhibiting OX1R-mediated NF-κB and MAPK signaling pathways in cerebral ischemia/reperfusion injury. Biochim Biophys Acta Mol Basis Dis. 2021;1867(11):166230. doi: https://doi.org/10.1016/j.bbadis.2021.166230

Huang S, Taylor CG, Zahradka P. Growth State-Dependent Activation of eNOS in Response to DHA: Involvement of p38 MAPK. Int J Mol Sci. 2023;24(9):8346. doi: https://doi.org/10.3390/ijms24098346

Engin A. Endothelial Dysfunction in Obesity and Therapeutic Targets. Adv Exp Med Biol. 2024;1460:489-538. doi: https://doi.org/10.1007/978-3-031-63657-8_17

Mazrouei S, Petry SF, Sharifpanah F, Javanmard SH, Kelishadi R, Schulze PC, et al. Pathophysiological correlation of arginase-1 in development of type 2 diabetes from obesity in adolescents. Biochim Biophys Acta Gen Subj. 2023;1867(2):130263. doi: https://doi.org/10.1016/j.bbagen.2022.130263

Li X, Hou R, Ding H, Gao X, Wei Z, Qi T, et al. Mollugin ameliorates murine allergic airway inflammation by inhibiting Th2 response and M2 macrophage activation. Eur J Pharmacol. 2023;946:175630. doi: https://doi.org/10.1016/j.ejphar.2023.175630

Luo M, Zhao F, Cheng H, Su M, Wang Y. Macrophage polarization: an important role in inflammatory diseases. Front Immunol. 2024;15:1352946. doi: https://doi.org/10.3389/fimmu.2024.1352946

Fujishima Y, Kita S, Nishizawa H, Maeda N, Shimomura I. Cardiovascular significance of adipose-derived adiponectin and liver-derived xanthine oxidoreductase in metabolic syndrome. Endocr J. 2023;70(7):663-75. doi: https://doi.org/10.1507/endocrj.EJ23-0160

Furuhashi M. New insights into purine metabolism in metabolic diseases: role of xanthine oxidoreductase activity. Am J Physiol Endocrinol Metab. 2020;319(5):E827-34. doi: https://doi.org/10.1152/ajpendo.00378.2020

Wang G, Qian P, Jackson FR, Qian G, Wu G. Sequential activation of JAKs, STATs and xanthine dehydrogenase/oxidase by hypoxia in lung microvascular endothelial cells. Int J Biochem Cell Biol. 2008;40(3):461-70. doi: https://doi.org/10.1016/j.biocel.2007.08.008

Zeng Y, Yang Q, Ouyang Y, Lou Y, Cui H, Deng H, et al. Nickel induces blood-testis barrier damage through ROS-mediated p38 MAPK pathways in mice. Redox Biol. 2023;67:102886. doi: https://doi.org/10.1016/j.redox.2023.102886

Pieretti JC, Junho CV, Carneiro-Ramos MS, Seabra AB. H2S- and NO-releasing gasotransmitter platform: A crosstalk signaling pathway in the treatment of acute kidney injury. Pharmacol Res. 2020;161:105121. doi: https://doi.org/10.1016/j.phrs.2020.105121

Chekalina NI, Kazakov YM, Mamontova TV, Vesnina LE, Kaidashev IP. Resveratrol more effectively than quercetin reduces endothelium degeneration and level of necrosis factor α in patients with coronary artery disease. Wiad Lek. 2016;69(3 pt 2):475-9.

Chekalina NI. Resveratrol has a positive effect on parameters of central hemodynamics and myocardial ischemia in patients with stable coronary heart disease. Wiad Lek. 2017;70(2 pt 2):286-91.

Downloads

Additional Files

Published

2025-12-25

How to Cite

Akimov, O. Y., Mykytenko, A. O., & Kostenko, V. O. (2025). Role of p38 activation in changes of nitric oxide production in rat biceps femoris muscle during metabolic syndrome. Modern Medical Technology, 17(4), 299–305. https://doi.org/10.14739/mmt.2025.4.339402